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Preface 
 

Bioinformatics has come a long way from its humble beginning of heuristic search 
engines such as FASTA and BLAST. The power of these heuristic search engines has 
resulted in rapid proliferation of specialized databases such as Pfam, InterPro, 
Prosite, UniProt, COG, CDD, from which a search will produce not only one or more 
matched sequences, but also a variety of functional annotations related to the query 
sequence. The database proliferation is an ongoing process, with some protein 
families (e.g., the G protein-coupled receptors) having their own database and 
website. These databases constitute essential tools for many biologists in their daily 
research activities. 

The first chapter in this book, by Debajyoti Ghosh and Swati Gupta-Bhattacharya, 
brings us to two specialized databases of protein allergens as well as bioinformatic 
tools for the characterization, identification, and prediction of such protein allergens. 
Perhaps not many people still remember the transgenic soy that has been genetically 
engineered to express ground-nut 2S albumin which turned out to be a strong allergen 
for ground-nut allergic people. Such problems could have been avoided if searchable 
allergen databases were available. While only a very small number of proteins are 
known to be potent allergens - the allergome database currently lists less than 2000 
protein allergens - it is quite possible that a protein that does not cause allergic 
response by itself, but it may well increase the allergic potency of other proteins. An 
allergic response may be caused by two or more proteins that are individually not 
allergenic. Allergen databases serve as essential infrastructure not only for future 
allergen research, but also for transgenic experiments in general. 

Publicly available databases also facilitate the identification of disease genes, 
especially those involving multi-gene disorders. For example, conventional genetic 
linkage analysis based on human pedigrees or from breeding experiments using 
animal disease models allow scientists to map the disease trait to one or a few genomic 
regions. Sequencing these regions and searching them against databases will yield 
information on the differences between these regions and those in the database, 
whether these differences are in conserved or variable regions, in coding sequences or 
in regulatory sequences, whether the matched sequences/genes are already annotated 
to be related to the complex disease trait, what biological functions are performed by 
the gene products encoded in these regions, etc. The chapter by Christopher Vidal and 
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Angela Xuereb Anastasi provides a real example of such an application involving 
osteoporosis. 

While database creation, maintenance and development continue to consume the time 
and effort of many bioinformaticians, most bioinformatic research projects are now 
focused on the identification of genetic switches, and how these switches are 
recognized by cellular machinery enabling the genetic program encoded in the 
genome to unfold during ontogeny. What switches are responsible for turning on the 
cellular machinery for genome replication and for its quality control? What switches 
are flipped on to initiate new protein synthesis in response to environmental 
challenges? What recognition system is packaged in the egg to turn on the first set of 
genetic switches in a newly formed zygote? Will we eventually be able to incorporate 
these genetic switches and the associated recognition system in a digital cell as a 
platform for drug testing, such as exploring the side effects of new 
biopharmaceuticals? What genetic switches often differ among people? How can the 
understanding of these differences in genetic switches among people guide us towards 
personalized medicine? It is not an exaggeration to state that modern molecular 
biology, which is the driving force for bioinformatics, is little more than the 
elucidation of genetic switches and their interactions with their dynamic recognition 
system in specifying the developmental process. Most chapters in this book deal with 
the recent development in characterizing and predicting the genetic switches and how 
they interact with other cellular components. 

The most fundamental genetic switches are the regulatory sequence motifs in both 
nucleotide and amino acid sequences. The most well known types of nucleotide motifs 
include the origin of genome replication, the transcription factor binding site, the 5’ 
and 3’ splice sites and branchpoint site in eukaryotic introns, the Shine-Dalgarno 
sequence for prokaryotic translation initiation, the Kozak consensus for eukaryotic 
translation initiation, internal ribosomal entry site, the poly-A site, the numerous 
hormone response elements and many more. Well known peptide motifs include those 
that facilitate posttranslational modifications such as phosphorylation, 
acetylation/deacetylation, proteolytic cleavage, N-terminal processing, leader 
sequences for targeting various cellular and extracellular locations and so on. 

Given a set of aligned sequence segments that are experimentally verified to be 
recognized by cellular machinery to accomplish a particular function, e.g., a set of 
transcription factor binding sites, how can we characterize these segments and use the 
characterization to scan the genome for new transcription factor binding sites? Phu 
Vuong and Rajeev Misra reviewed computational methods for identifying 
transcription factor binding sites in prokaryotic genomes. While their illustration of 
the method is somewhat primitive and does not really touch upon the modern 
computational approaches (in particular those incorporating site-dependence) and the 
associated statistical tests, the compilation of the relevant tools from a user perspective 
should be quite useful to readers who need a simple introduction to bridge them to 
more advanced bioinformatic tools and algorithms. 
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The chapter by Sergio Lobos and colleagues represents a more systematic application 
of motif-discovery methods to identify functional motifs in promoters of genes that 
participate in lignin degradation in Phanerochaete chrysosporium. The evolutionary 
perspective and the phylogenetic relationship among lip (lignin peroxidase) genes 
offer the reader a glimpse of how genetic switches may change during evolution 
leading to functional divergence. 

While many bioinformatic studies focus on identifying shared sequence features in 
motifs and how these shared features are recognized by protein or RNA domains to 
accomplish a function, some sequences may share the same function but exhibit no 
similarity in either sequence or structure. There are two known types of functional 
sequences that belong to this category. The first is the eukaryotic ribosomal entry site 
(IRES). Among experimentally validated eukaryotic IRESs, no shared sequence or 
structural similarity has been found. Recent studies suggest that the shared feature is 
the lack of secondary structure, which explains their shared lack of sequence or 
structural similarities. The second type is exemplified by the intrinsically unfolded 
protein or region (IUP/IUR) which, according to the “dog-on-a-leash” model, may 
function by allowing a biochemically active domain (the dog) to stretch out to reach its 
target/substrate. The chapter by Cesira de Chiara and Annalisa Pastore provides an 
excellent introduction to IUP/IUR. 

A biological concept closely related to regulatory motifs is the regulon, which is a set 
of genes sharing the same regulatory motif and co-regulated by the same cellular or 
environmental signal. For example, when oestrogen molecules diffuse into the cell and 
into the nucleus, they will bind to the oestrogen receptors which in turn will control 
the expression of genes sharing the oestrogen response element. The genes that share 
the oestrogen response element and co-regulated by the oestrogen through the 
oestrogen receptors constitute a regulon (the oestrogen regulon). The classical regulon 
is the lac operon in Escherichia coli that responds to the environmental availability of 
glucose and lactose.    

How can we identify a regulon in response to an environmental change? In the case 
of the oestrogen regulon, we may only need to characterize the oestrogen response 
elements, and then scan the genome for other genes harbouring such elements to 
obtain a putative oestrogen regulon, followed by experimental validation. But what 
can we do if we do not know anything about the oestrogen response element? The 
common approach is to subject the experimental animals to oestrogen treatment, 
check which genes are up-regulated or down-regulated relative to the control by 
microarray, SAGE or deep sequencing method, and verify whether some co-
expressed genes are in fact co-regulated, e.g., whether they share the same 
regulatory motif. Such a seemingly straightforward task is made difficult because of 
the immense noise inherent in the experimental result from large-scale 
transcriptomic studies. In addition to the genes in the oestrogen regulon that may 
increase or decrease their expression in response to the oestrogen treatment, many 
other genes may also increase or decrease their expression, either stochastically or 
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through indirect/downstream regulation. How can we peel off the shell of noise and 
reach the central core of truth? 

The chapter by Leon Bobrowski and Tomasz Łukaszuk, advocating the relaxed linear 
separability (RLS) approach to feature (gene) subset selection, represents one of the 
exciting new mathematical and computational tools that can help us to progressively 
narrow down to a minimal set of genes that lead to the best separation between the 
experiment and the control. Such a set of genes should greatly improve the efficiency 
of identifying shared regulatory motifs and co-regulated genes. 

A conceptually closely related but computationally different method is presented by 
Carlos Roberto Arias, Hsiang-Yuan Yeh and Von-Wun Soo, in the context of disease 
gene prioritization. Given a set of genes, how would we know which one is the most 
related to the disease? Suppose we have two set of people, one with a particular 
disease and the other not. Also suppose that biologists have done a variety of 
phenotypic (e.g. gene expression) and genetic analysis (e.g., linkage analysis from 
pedigrees) related to the disease. Now given all these information (the training 
information) and a set of candidate genes (which could be large) that might be 
causative agents of the disease, how can we prioritize the genes to facilitate our 
identification of the genes responsible for the disease? The chapter by Arias et al. 
covers several approaches for such a complex task by using network methods. 

What research should bioinformaticians be busy with in the future? The discovery of 
DNA and base complementarity paved the way for understanding and predicting 
interactions between nucleotide sequences – they interact mainly through 
complementary base pairing. The characterization of nucleotide regulatory motifs has 
led to fantastic progresses in predicting interactions between nucleotide sequences and 
proteins, such as that between splice sites and spliceosomes, or between restriction 
sites and restriction enzymes. However, understanding the interaction among 
proteins, the ultimate workhorses in the cell, still lags behind. 

To be fair, biomedical scientists in general, and biochemists in particular, have 
characterized a large number of protein interactions, e.g., the interaction between 
antibody and antigen, between surface proteins of viruses (such as HIV-1) and the 
receptor proteins on the host cell membrane, between certain proteases and their 
cleavage sites, between various kinases and their target proteins, between 
acetylases/deacetylases and histones, etc. However, these interactions are not sufficient 
to understand how living cells work. We need large-scale methods to systematically 
characterize and predict all protein interactions in a cell and to understand how 
proteins come together to form partners through their surface features. 

The last two chapters of the book are exclusively on proteins. A variety of technologies 
for large-scale characterization of protein interactions have been developed in recent 
years. The chapter by Bernd Sokolowski and Sandra Orchard reviews the technology 
and illustrate how the results can be used in conjunction with relevant databases to 
understand protein interactions and to construct protein interaction networks. Some 
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readers might feel concerned about an overemphasis on physical interactions in recent 
years because many proteins cooperate to accomplish a task not by physical 
interactions. For example, the β-galactosidase (LacZ) and β-galactoside permease 
(LacY) encoded in the E. coli lac operon cooperate to accomplish the task of 
metabolizing lactose, but they do not physically interact. Similarly, not all Krebs cycle 
enzymes are found physically interacting. We need parallel development of 
biotechnological and bioinformatic methods for both functionally interacting networks 
and physically interaction networks. Some of the databases reviewed in the chapter 
are relevant for constructing functionally interacting networks. 

With a large number of protein physical interactions and interaction networks 
documented in recent years, biologists have found themselves in an awkward position 
of knowing little about how proteins interact physically and specifically with their 
partners through their surface features. How much of the cellular protein interaction is 
due to surface geometry, electrostatic interaction or simply due to local crowding that 
forces together otherwise non-interacting proteins? It would be really nice to know 
how interacting protein partners find each other, adapt their surface features to each 
other and achieve the structural docking necessary for their function. The time is ripe 
for such research endeavour. Recent increase in the number of protein structures has 
provided an excellent platform for validating computational algorithms for structural 
modelling. In particular, structures of protein-protein complexes and protein-RNA 
complexes have shed light on the induced structural changes of proteins and RNA in 
response to the surface features of their interacting partners. The chapter by Sebastian 
Schneider and Martin Zacharias offers an advanced review of the current 
computational algorithms used in flexible protein-protein docking.  

 
Dr. Xuhua Xia  

Biology Department 
University of Ottawa 

Canada 
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Allergen Bioinformatics: Recent  
Trends and Developments 

Debajyoti Ghosh1 and Swati Gupta-Bhattacharya2 
1Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine 

University of Cincinnati College of Medicine, Ohio 
 2Division of Plant Biology Bose Institute Kolkata 

 1United States of America 
2India 

1. Introduction  

Allergy is a major cause of morbidity worldwide. Allergic reactions result from maladaptive 
immune responses in predisposed subjects, to otherwise harmless molecules. These 
allergenic molecules, usually proteins/glycoproteins, can not only elicit specific 
immunoglobulin E (IgE) in susceptible subjects, but also crosslink effector cell-bound IgE 
molecules Leading to the release of mediators (e.g. Histamine) and causation of symptoms. 
From clinical and molecular biological data available in several publicly accessible 
databases, it is now evident that among hundreds and thousands of proteins that exist in 
nature, only a few can cause allergy. For example, in more than 500,000 entries (71345 
documented at the protein level; Nov, 2010) in swissprot/uniprot database 
(http://www.uniprot.org), only 686 proteins have been listed in the IUIS allergen 
nomenclature database (www.allergen.org) as documented allergens. Although about 1500 
allergens (including iso-allergens) have been listed in the Allergome database 
(www.allergome.org), it has been shown that they are distributed into a very limited 
number of protein families. However, critical feature(s) that makes proteins allergenic is not 
fully understood. In the present article, we’ll discuss recent applications of bioinformatic 
tools that shaped our current understanding about allergenicity of proteins.  

2. Allergen bioinformatics - a need of the hour 

Experiments on genetic engineering during the last few decades have led to the production 
of numerous genetically modified (GM) organisms. So, proteins introduced into GM 
organisms through genetic engineering must be evaluated for their potential to cause 
allergic diseases. As a classical example, transgenic soy, that has been genetically engineered 
to express ground-nut 2S albumin, was found to elicit hypersensitivity reactions in ground-
nut allergic people (Nordlee et al., 1996). In 2001, the FAO/WHO suggested a procedure for 
performing FASTA or BLAST (Basic Local Alignment Search Tool) searches, and a threshold 
of greater than 35% identity in 80 or greater amino acids to identify potential allergenic 
cross-reactivity of transgene encoded proteins in genetically enhanced crops (Silvanovich et 
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al., 2009). Given that this will not exclude all probabilities of a protein to be allergenic (and 
cross-reactive to known allergens), the codex guidance recognized that the assessment will 
evolve based on new scientific knowledge (Goodman, 2008).  
Bioinformatic tools are key components of the 2009 Codex Alimentarius for an overall 
assessment of the allergenic potential of novel proteins. Bioinformatic search comparisons 
between novel protein sequences, as well as potential novel fusion sequences derived from 
the genome and transgene or from any known allergen(s) are required by all regulatory 
agencies that assess the safety of genetically modified (GM) products(Ladics et al., 2011). 
Allergens were usually seen as an array of proteins with no apparent similarity in structure 
and function. They come from diverse sources: Plants, animals or fungi and may take different 
modes of exposure: inhalation, ingestion, sting or contact. They are, like their non-allergenic 
counterparts, structurally heterogeneous. For example, the major cat allergen Fel d 1, is an 
alpha-helical tropomyosin, while a major dust mite allergen Der p 2 consists predominantly of 
beta sheets and the major birch pollen allergen Bet v 1 contains both of these structural 
elements. Allergen sequences are extensively studied to find out any possible structural 
element or function associated with allergenicity. However, no such allergen-specific 
structural / functional element could be identified. High sequence identity between 
homologous protein allergens may result in common surface patches that may confer cross-
reactivity among them. Aalberse pointed out that proteins sharing less than 50% sequence 
identity are rarely cross-reactive(Aalberse, 2000). In contrast, proteins that share at least 70% 
identity often show cross-reactivity. Many IgE-binding epitopes have been identified as 
sequential epitopes, although for many this does not represent the full epitope. Linear epitopes 
are usually part(s) of conformational epitope(s) responsible for a significant portion of IgE 
binding. While IgE-binding peptides can consist only of five amino acids (Banerjee et al., 1999), 
the majority of characterized IgE-linear epitopes are eight amino acids or longer (Chatchatee et 
al., 2001; Shin et al., 1998). Astwood et al. recommended sequence comparisons to a database 
of known IgE-binding epitopes. Finally, Ivanciuc and colleagues have recently utilized mixed 
sequence and structure-based methods to predict IgE-binding sites. This is based on 
comparison of local sequence and structure to identify common features associated to 
allergens (Ivanciuc et al., 2009b). 

3. Allergen databases 

Exponential growth of molecular and clinical data on allergens has created a huge demand 
for efficient storage, retrieval and analyses of available information. There are numerous 
allergen databases available on Internet. They are targeted to different aims ranging from 
easy accessibility of data to novel allergen prediction. A few examples have been provided 
in table-1. 
The IUIS (International Union of Immunological Societies) allergen nomenclature 
subcommittee has created a unique, unambiguous nomenclature system for allergenic 
proteins. It maintains an allergen database (www.allergen.org) containing an expandable list 
of WHO/IUIS –recognized allergen molecules arranged according to Linnean system of 
classification (Kingdoms: Plantae, Fungi and Animalia and subdivided into lower 
orders)(Chapman et al., 2007) of the source organism. This database is a precise and 
convenient source for researchers, since it contains the biochemical name and molecular 
weight of the allergens and isoallergens (multiple molecular forms of the same allergen 
showing ≥67% sequence identity). It is searchable by allergen name, source and taxonomic 
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group. For example, a search using the key word ‘Bet v 1’ shows about 36 variants 
(isoallergens) of this allergen, each with genbank, uniprot accession numbers and, if 
available, with PDB IDs. Each uniprot ID is linked to the original entry in uniprot database. 
Moreover, once the uniprot IDs are obtained, their sequences can be retrieved in batches 
using uniprot’s ‘retrieve’ tab. 
Allergome (Mari et al., 2006) is a vast repository of data related to all allergen molecules. It 
contains data about a larger number of allergens than actually recognized by IUIS/WHO. It 
also contains links to other databases (eg Uniprot, PDB) and computational resources with 
additional extensive links to literature. The Allfam database is a useful resource for 
grouping of allergens into protein families. It utilizes the allergen information from 
‘Allergome’ database and protein family information from pfam database. It can be sorted 
by source (plants/animals/bacteria/fungi) and route of exposure 
(inhalation/ingestion/contact/sting etc) or can be searched for specific protein families. 
Allergen entries are linked to corresponding records in the Allergome database. In addition, 
each allergen family is linked to a family fact sheet containing descriptions of the 
biochemical properties and the allergological significance of the family members.  
 
Name (URL) Purpose 

IUIS 
(http://www.allergen.org/) 

Database targated towards 
systematic nomenclature of 
allergenic proteins  

Allergome 
(http://www.allergome.org/) 

Vast source of information and 
references about allergen 
molecules 

Allfam  
(http://www.meduniwien.ac.at/allergens/allfam/) Database for allergen classification 

Allergen Database for Food Safety (ADFS) 
(http://allergen.nihs.go.jp/ADFS/) 

Database with computational 
allergenicity prediction tool 

The Allergen Database 
(http://allergen.csl.gov.uk//index.htm) 

A basic database for allergen 
structures 

Allermatch 
(http://www.allermatch.org/) 

Allergenicity prediction from 
sequence 

AllerTool 
http://research.i2r.a-star.edu.sg/AllerTool/ 

Webserver for predicting 
allergenicity and allergenic cross-
reactivity 

AlgPred 
(http://www.imtech.res.in/raghava/algpred/) In silico prediction of allergenicity 

WebAllergen 
(http://weballergen.bii.a-star.edu.sg/) 

To predict potential allergenicity 
of a protein from its sequence 

SDAP 
(http://fermi.utmb.edu/SDAP/) 

Database of allergen structure 
with various resources, links and 
computational tools 

Table 1. A few databases of allergenic proteins and web-servers to predict protential 
allergenicity from amino-acid sequence.  
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Although the above-mentioned databases are very useful resources, they do not contain any 
computational tool to predict allergenicity from amino acid sequences of proteins. However, 
there are several other databases that can efficiently deal with this aspect. ADFS (Allergen 
Database for Food Safety) is developed and maintained by Japan’s National Institute of 
Health Sciences. It is a good resource of available information about known allergens 
(uniprot protein ID, PDB accession number, epitope sequence, presence of carbohydrate, 
pfam - and interpro domain IDs etc.). Moreover, this website has computational tools to 
predict allergenicity. Other websites dedicated to allergenicity prediction are Allermatch, 
AllerTool and Algpred etc. Detailed discussion on these servers is beyond the scope of the 
present article.  
The database which is dedicated to the structural biology of the allergic proteins is SDAP 
(Structural Database of Allergenic Proteins) hosted by the University of Texas Medical 
Branch. It integrates a database of allergenic proteins with various computational tools for 
prediction of allergenicity and epitope sequences on protein allergens. 
Analyses of data available in different publicly accessible database have shaped our current 
understanding about allergens, as discussed in the subsequent sections of this article.  

3.1 Allergens seen as proteins without bacterial homolog  
Among numerous proteins sequenced till date, only about a thousand has been classified as 
allergens, although no common structural or biochemical function could be assigned to all 
allergens. To address this problem, Emanuelson and Spangfort (2007) used 30 randomly 
selected allergen sequences to search the non-redundant Expasy/SIB and UniProt/TrEMBL 
databases (subsection Bacteria+Archea) using BLAST (Basic Local Alignment Search Tool) 
program. For each allergen, an appropriate species-specific non-allergenic control homolog 
was included. It has been found that 25 out of 30 allergens do not have any bacterial 
homologues; two other allergens have only a few, while all the non-allergenic controls 
retrieved numerous bacterial homologues. Moreover, major allergens like Bet v 1, also lack 
human homolog. The authors, thus, interpreted that the allergens are usually foreign 
proteins that lack bacterial homologues (Emanuelsson and Spangfort, 2007). 

3.2 Allergenic proteins can be organized into families  
The first definite interpretation that allergens can be grouped came from arranging 
allergens into pfam protein families. Pfam classifies proteins into families on the presence 
of specific domains (pfam domains) identified through multiple sequence alignments and 
Hidden Markov Models. Pfam 25.0 (latest version; March 2011) contains over 100, 000 
protein sequences classified into 12,275 families (Finn et al., 2010). The allergen database 
that contains pfam domain information is ‘AllFam’ (http://www.meduniwien.ac.at 
/allergens/allfam), where allergen sequences are classified into protein families using the 
Pfam database, and its associated database, SwissPfam. AllFam includes all allergens that 
can be assigned to at least one Pfam family. But many allergens are multi-domain 
proteins. The domains of these proteins are merged into a single AllFam family, if the 
Pfam domains of this allergen occur only in combination with a single other Pfam 
domain. Figure-1 shows the distribution of allergenic proteins in different Allfam families. 
The major allergen families (containing 10 or more allergens) with corresponding Pfam 
domains are shown in Table-2. 
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Fig. 1. Pi chart showing the distribution of allergic proteins in different AllFam families. 
Numbers of constituent allergens have been indicated within brackets. 
 

Allfam ID Name Pfam ID Allergens Examples 

AF050 Prolamin 
superfamily PF00234 82 Amb a 6 (Ragweed) 

Ana o 3 (cashewnut) 

AF007 EF hand domain PF00036 
PF01023 63 Aln g 4 (Alder) 

Bet v 3 (birch) 

AF051 Profilin PF00235 48 Bet v 2 (birch) 
Ana c 1 (pinapple) 

AF054 Tropomyosin PF01357 47 Der p 10 I(mite) 
Hom a 1 (lobster) 

AF045 Cupin 
superfamily 

PF00190 
PF04702 42 Ara h 1 (peanut) 

Gly m 5 (soyabean) 

AF044 
CRISP/PR-

1/venom group 5 
allergen family 

PF00188 26 Pol d 5 (wasp venom), 
Art v 2 (mungwort) 

AF069 Bet v 1-related 
protein PF00407 24 Bet v 1 (birch) 

Api g 1 (celery) 

AF015 Lipocalin PF00061 
PF08212 23 Can f 1 (dog) 

Bos d 2 (domestic cattle) 

AF093 Expansin, C-
terminal domain PF01357 22 Phl p 1 (timothy grass) 

Tri a 1 (wheat) 

AF021 Subtilisin-like 
serine protease 

PF00082 
PF02225 
PF05922 

21 Asp f 13 (fungal) 
Pen c 1 (fungal) 

AF024 Trypsin-like 
serine protease 

PF00089 
PF02983 
PF09396 

17 Der f 3 (mite) 
Blo t 3 (mite) 

AF060 Thaumatin-like 
protein PF00314 14 Mal d 2 (apple) 

Pru av 2 (Cherry) 

AF056 Serum albumin PF00273 13 Can f 3 (dog) 
Fel d 2 (cat) 
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AF094 Expansin, N-
terminal domain PF03330 12 Phl p 1 (timothy grass) 

Ory s 1 (rice) 

AF031 Enolase PF00113 
PF3952 11 Alt a 6 (fungal) 

Cha h 6 (fungal) 

AF009 Globin PF00042 11 Chi t 1 (midge) 
Chi t 2 (midge) 

AF043 Hevein-like 
domain PF00187 11 Hev b 6 (rubber latex) 

Mus a 2 (banana) 

AF073 Pectate lyase PF00544 11 Amb a 1 (ragweed) 
Cry j 1 (Japanese cedar) 

AF057 Polygalacturonase PF00295 11 Cry j 2 (Japanese Cedar) 
Jun a 2 (mountain Cedar) 

AF037 Lipase PF00151 
PF01477 11 Pol a 1 (wasp) 

Sol i 1 (ant) 

AF070 60S acidic 
ribosomal protein PF00428 10 Alt a 5 (fungal) 

Cla h 6 (fungal) 

AF033 Alpha amylase 

PF00128 
PF02806 
PF07821 
PF09154 
PF09260 

10 Blo t 4 (mite) 
Der p 4 (mite) 

AF065 Alpha/beta casein PF00363 10 

Bos d 8 alphaS1 
(domestic cattle) 

Ovi a casein alphaS1 
(sheep) 

AF004 Eukaryotic 
aspartyl protease 

PF00026 
PF07966 10 Asp f 10 (fungal) 

Bla g 2 (cockroach) 

AF030 Papain-like serin 
protease 

PF00112 
PF08246 10 Der p 1 (mite) 

Blo t 1 (mite) 

AF023 Thioredoxin PF00085 10 Alt a 4 (fungal) 
Fus c 2 (fungal) 

AF073 Pectate lyase PF00544 10 Amb a 1 (short ragweed) 
Jun a 1 (mountain ceder) 

Table 2. Major allergen families (AllFam familes) that contain 10 or more allergens are 
shown with correspondent pfam domains and examples. Number of allergenic members / 
allergen family has also been shown.  

AllFam takes the allergen information from “Allergome”, the comprehensive allergen 
database. In the latest version of Allfam (May, 2011), 950 allergens have been arranged into 150 
allergen families (AllFam families). It has been found that the allergens are distributed in a 
really skewed manner with about 30% members belonging to only 5 families (Prolamin, 
Profilins, EF hands, tropomyosin and cupins) and showing few restricted biological functions 
such as hydrolysis, storage or binding to cytoskeleton [6]. Moreover, allergens contain about 
245 pfam domains in total, which is only about 2.0% of all domains identified to date. 
AllFam gave us an opportunity to retrieve and sort allergen data according to source 
(plant/animal/fungi/bacteria), route of exposure (inhalation/ingestion/contact etc) and 
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Pfam/AllFam family identities. This analysis combined with the study of evolutionary 
relationship among the proteins has led to the following valuable insights: 
i. Pollen allergens (Inhalant plant allergens) are restricted into few protein 

families(Radauer and Breiteneder, 2006). They populate only 29 out of more than 7000 
protein families, with (a) Expansins (b) Profilins and (c) calcium-binding proteins (with 
EF-hand domains) consisting most of the pollen allergens followed by Bet v 1 related 
/pathogenesis-related proteins (PR10 family). Figure-2 shows the evolutionary 
relationship between several allergenic and non-allergenic members of (a) expansins 
and (b) profiling families. The evolutionary history was inferred using the Neighbor-
Joining method(Saitou and Nei, 1987). The evolutionary distances were computed using 
the Poisson correction method(Zuckerkandl and Pauling, 1965) and the phylogenetic 
analyses were conducted in MEGA4(Tamura et al., 2007). Similar method has been 
followed in the subsequent sections of the present article. Allergens of the expansin 
family are clustered as highly identical proteins as shown in the figure. Allergenic plant 
profilins also constitute a conserved homologous group with high sequence identities 
(70-85%) among themselves, while showing low identities (30-40%) with non-allergenic 
profilins from other eukaryotes including human(Radauer and Breiteneder, 2006). 
About 10 of the 29 pollen allergen families are also present in plant-derived foods.  
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Fig. 2. Phylogenetic trees showing the relationships of two major pollen allergen families: (a) 
Expansins, (b) Profilins and their respective non-allergenic homologues. Pollen-related plant 
food allergens such as Ara h 5, Dau c 1 etc are also included. Uniprot accession numbers are 
shown. Positions of allergens are indicated by dotted lines. 
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ii. In case of major animal food protein families evolutionary distance from human 
homologue reflects their allergenicity (Jenkins et al., 2007). This has been demonstrated 
in major food allergen families like (a) parvalbumins, (b) casins and (c) tropomyosins.  

 

 
 

 

 
Fig. 3. Dendrogram showing evolutionary relationship among 12 different parvalbumins (a) 
and 13 different tropomyosins (b) from animals and human. Allergenic proteins and their 
non-allergenic homologues as well as the closest human homologues are chosen. The 
Uniprot accession numbers and positions of allergen clusters are indicated. 
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iii. Plant food allergens are clustered into only four major protein families  
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Fig. 4. Un-rooted neighbor-joining tree showing evolutionary relationship among the 
members of Bet v 1-related plant protein family (containing pfam domain PF00407). Uniprot 
accession numbers and position of the allergen cluster has been indicated.(Radauer and 
Breiteneder, 2007). They are (a) the Prolamin superfamily with PF00234 domain (b) the 
cupin superfamily with PF00190 and PF04702 domains (c) the Profilins with PR00235 
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domain and (d) the Bet v 1 –like proteins containing PF00407 domain. Prolamins are seed 
storage proteins containing about 82 characterized allergens, with 65 enlisted as ingestants. 
Figure-4 shows the evolutionary relationship among the Bet v 1-homologous protein family. 
Twenty-four proteins of this group are known as allergens present in pollen and plant-
derived foods responsible for causing allergic sensitization in a large number of people. 

3.3 Allergen-associated protein domains 
The other allergen database that utilizes the Pfam protein family information is Motifmate 
(http://born.utmb.edu/motifmate/index.php) (Ivanciuc et al., 2009a). Motifmate assigns 
pfam domains to the allergens listed in the SDAP (Structural Database of Allergenic 
Proteins) database developed and maintained by the University of Texas 
(http://fermi.utmb.edu/SDAP)(Ivanciuc et al., 2003). The recent version of this database 
contains 679 Proteins (May, 2011). The authors pointed out that all the allergenic protein 
entries in SDAP could be associated with only 130 pfams (of total 9318 pfams) with only 
about 31 pfam protein families containing 4 or more number of allergens. [Figure-5]. This 
outcome supports the previous finding that the allergenic proteins are clustered in few pfam 
families. 
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Fig. 5. Distribution of Pfam domains in allergenic proteins according to Motifmate database. 
lipid transfer proteins (PF0234) highest number of allergns. 

4. Insights from structural bioinformatics 

After the elucidation of X-ray crystal structure of the birch pollen allergen Bet v 1(Gajhede et 
al., 1996), structures of several allergens have been solved. Searching the protein databank 
with the keyword “allergens” returns 321 entries, with occasional presence of multiple 
entries for one single allergen. Although protein structure gives us valuable insight into 
their function, structures of several allergens are still not known. More importantly, some 
allergen families have members with known structures, while others may have very few / 
no member whose structure(s) have been deduced. Allergen structures are particularly 
useful to elucidate molecular features related to allergenicity, cross-reactivity and for 
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designing hypoallergenic derivatives. For example, there are about five structures in protein 
data bank that correspond to Bet v 1, the major birch pollen allergen : the x-ray structure 
(1BV1.pdb), the NMR structure (1BTV.pdb), mutants (1B6F.pdb and 1QMR.pdb), complexed 
with IgG Fab (1FSK.pdb) and the hypoallergenic isoform Bet v 1d (3K78.pdb). On the 
contrary, several groups, such as the cupin family of seed storage protein allergens are 
under-represented.  
Knowledge about allergen structures is important because it is the over-all structure, not the 
sequence, which determines the biochemical/immunological properties. Molecular 
modeling can help us in case the experimentally determined structure of the allergen is not 
available. Homology modeling, also known as comparative molecular modeling, can predict 
the 3D model of a given protein from its amino acid sequence using experimentally derived 
structure(s) (X-ray/NMR) of one or more related homologous protein(s) (called template). 
This technique is becoming increasingly popular because, if required template selection and 
alignment criteria are met, it is believed to be the most reliable modeling technique to date 
(Marti-Renom et al., 2000). It is becoming increasingly useful because although there are 
millions of proteins in nature, the number of structural folds they can assume is limited 
(Zhang, 1997) and the number of X-ray/NMR structure of proteins is exponentially 
increasing providing an increased chance of getting a suitable ‘template’. Several authors 
have successfully utilized this technique of molecular modeling to predict allergen 
structures and to elucidate the structural basis of cross-reactivity between allergens.  
Ara h 1 (vicilin) and Ara h 2 (2S albumin) are seed storage proteins of peanut (Arachis 
hypogea). They are recognized by serum IgE of >90% of peanut-allergic people, thus showing 
their importance as major peanut allergens (Shin et al., 1998; Stanley et al., 1997). Ara h 1 
shows IgE-mediated cross-reactivity with other vicilin allergens such as Len c 1 (from lentil) 
and Pis s 1 (from sweet pea). Following sequence alignment using ClustalX, structural 
models of Ara h 1, Len c 1 and Pis s 1 were generated from experimentally derived structure 
of beta-conglycinin (RCSB protein data bank code: 1IPJ) using programs InsightII, 
Homology and Discover3 (Accelrys, USA). Electrostatic surfaces of these proteins were also 
generated using program GRASP (Nicholls et al., 1991). Mapping of linear epitope 
sequences revealed that nine out of 23 linear B-cell epitopes are located in the N-terminal 
region. They are unique to Ara h 1. But the remaining B-cell epitopes, situated in the C-
terminal part, are well-exposed to the surface, share a high degree of homology and 3D 
conformation to Len c 1 and Pis s 1. They might be responsible for cross-reactivity among 
Ara h 1, Len c 1 and Pis s 1 food proteins. Similarly, Ara h 2 and other dietary allergenic 2S 
albumins Jug r 1 (walnut), Car i 1 (pecan nut), Ber e 1 (Brazil nut) were modeled using the 
atomic coordinates of homologous Ric c 1(castor bean 2S albumin). Mapping of known 
epitope sequences on the template and modeled structures revealed no structural homology 
between allergenic 2S albumins of peanut, walnut, pecan and brazil nut. This indicates that 
cross-reactivity between Ara h 1 and other 2S albumins, which is less likely, might not be 
mediated by protein epitopes, but CCDs (cross-reactive carbohydrate determinants). 
However, the c-terminal epitope region of Jug r 1 showed a clear structural homology with 
Car i 1 indicating the possibility of their cross-reactivity.  
Another important insight was obtained from the homology modeling of allergenic 
cyclophilins(Roy et al., 2003). Groups of highly homologous cross-reactive allergens such as 
cyclophilins, profilins, MnSOD are known as pan-allergens. They often cross-react with their 
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respective human homologues(Crameri et al., 1996) and such cross-reactivity might be 
responsible for severity and perpetuation of symptoms in the absence of exogenous allergen 
exposure(Fluckiger et al., 2002). Allergenic cyclophilins (peptidyl-prolyl cis-trans isomerase; 
PF00160) have been identified from several organisms such as: Periwinkle (pollen allergen 
Cat r 1), birch (pollen allergen Bet v 7), Aspergillus fumigatus (Asp f 11, Asp f 27), Psilocybe 
cubensis, Malassazia furfur (Mala s 6, formerly known as Mal f 6) and carrot. IgE-mediated 
cross-reactivity between Mala s 6, Asp f 11, yeast cyclophilin and human cyclophins has 
been demonstrated (Fluckiger et al., 2002). The structure of human cyclophilin, which shows 
high sequence identities to Asp f 11, Mala s 6 and yeast cyclophilin, was known from 
crystallography (PDB code: 2RMB). Thus, taking this as the template, the molecular models 
of three other cyclophilins were generated and compared with the human homologue to 
understand the structural basis of their cross-reactivity.  
 

 
Fig. 6. Structure diagram of the allergenic cyclophilin Mala s 6 as predicted in 2003 from 
homology modeling (left figure) and as determined by x-ray crystallography (right figure) 
in 2006 (2CFE.pdb). Alpha helices have been shown in red, while beta sheets are in yellow 
and loops (smoothed) are in green.  

Molecular modeling was done using program Modeller (Sali and Blundell, 1993). The 
structures were energy-minimized using program Discover with Consistent Valence Force 
Fields(Hagler et al., 1979) and their steriochemical qualities were checked using 
Procheck(Laskowski, 1993). Several empirical/semi-empirical programs were used to 
predict the antibody binding sites (B-cell epitopes) on these proteins and residue-wise 
solvent accessibility values of these predicted epitopes were calculated using program 
NACCESS(Hubber, 1992). The cyclosporine-binding site of these proteins were also 
identified by aligning the sequences (using ClustalW) and structures. This study revealed 
large conserved solvent-exposed patches on the surfaces of these proteins strongly 
suggesting their cross-reactivity. The x-ray crystal structure of Mala s 6 (PDB code: 2CFE), 
published three years later (Glaser et al., 2006), very much resembles its predicted model 
[Figure-6]. The domain-swapped structure of Asp f 11 dimer (PDB code: 2C3B), also 
published at the same time, showed similar structural fold. Asp f 11 dimer (resulting from 
increased protein concentration) seems to be enzymatically inactive, since the active sites of 
both its subunits are blocked due to dimerization. However the constituent monomers 
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retained the basic cyclophilin structure. More recently, a comprehensive 3D structural 
modeling of allergens, with no known structure, has been conducted followed by surface 
accessibility calculation and mapping of known IgE-binding epitope sequences. It has been 
found that Ala, Asn, Gly and Lysine have a high propensity to occur in the IgE-binding sites 
on the surface of allergenic proteins (Oezguen et al., 2008).  
Finally, techniques of structural bioinformatics have also been applied to assess features 
critically required for allergenicity and cross-reactivity. This has been done by analyzing the 
predicted structure of protein T1, the naturally occurring non-allergenic member of the Bet v 
1 allergen family (Ghosh and Gupta-Bhattacharya, 2008). Protein T1 shows considerable 
sequence similarity with the proteins of Bet v 1 allergen family, but it is neither allergenic, 
nor cross-reactive to the Bet v 1 group (Laffer et al., 2003). Comparative molecular modeling, 
solvent accessibility calculations and mapping of surface electrostatic potential showed 
substantial difference in antigenic surface that can be responsible for the loss of cross-
reactivity. Solvent-accessible surface area and electrostatics calculations were done using 
program DSSP (dictionary of secondary structure of proteins) and program APBS (Adoptive 
Poissopn-Blotzman solver) respectively (Baker et al., 2001; Kabsch and Sander, 1983). 
Although, as suggested by ligand docking, it should be able to perform its biological 
function as a brassinosteroid carrier.  

5. Conclusion  

Allergy is a world-wide problem. Allergic symptoms are elicited following exposure to a 
structurally diverse group of proteins known as allergens. Understanding allergenicity at 
the molecular level has wide application in food safety and in treating allergic diseases. 
What makes a protein allergic is not yet understood. However, advanced tools of 
bioinformatics have been applied to address this problem. It has been found that allergens 
are usually foreign proteins with few/no bacterial homologue. They are clustered into few 
protein families (associated with a limited number of protein domains) opposing the idea 
that any protein can be allergenic. Methods have been developed to predict probable 
allergenicity from protein sequence, although more works need to be done for better and 
more precise prediction. The structural difference between IgG-binding and IgE-binding 
epitopes is still not very clear, but homology modelling in combination with residue-wise 
solvent-accessibility of monomers and biological assemblies of allergens certainly gives 
valuable information about antigenic determinants on protein allergens.  
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1. Introduction  

Complex diseases are common within human populations and communities and pose a 
great burden not only to affected individuals, but also to society and the health system. 
Disorders such as chronic heart disease, diabetes, Alzheimer’s, epilepsy and many others, 
are caused by complex interactions of a number of genetic and environmental factors. This 
makes the identification of the responsible genes difficult if using the same methodologies 
used for monogenic diseases. For more than fifteen years there has been a collective effort by 
researchers from around the world to identify genes and genetic variations that increase the 
risk for osteoporosis and fractures in ageing populations to identify novel therapeutic and 
prognostic targets, but predominantly most studies have been inconclusive. Genetic 
heterogeneity between different populations is the main factor responsible for this lack of 
concordance between different studies. Using different approaches such as association, 
family linkage, genome-wide association and meta-analysis, researchers reported numerous 
genes that might play a role in bone physiology, most of the time searching for correlation 
with phenotypes such as low bone mineral density (BMD) and fractures. Unfortunately, 
most of these genetic variations were not further investigated for their functional role and 
how these could lead to the disease. Some monogenic bone diseases led to the identification 
of genes that were never considered to be involved in bone physiology such as the low 
density lipoprotein receptor-related protein (LRP)-5 (Gong et al., 2001) and sclerostin (SOST) 
genes (Brunkow et al., 2001). 
A genome-wide linkage scan was performed in two Maltese families with a very high 
incidence of osteoporosis, where suggestive linkage to chromosome 11p12 was observed. 
After investigating the genes known to be found at this region by DNA sequencing, we 
identified a variant in the CD44 gene that was co-segregating with the inherited haplotype 
in all affected members within one of the families. Further studies on this variant suggested 
that it could affect pre-messenger RNA splicing, or organisation, leading to different levels 
of slightly modified variants of the same protein (isoforms). Other loci were identified in 
both families. 
Without doubt, the analysis of data would not have been possible without the number of 
bioinformatic tools and software that are available. The advances in computer technology 
including the internet, led to the development of various software and online tools. In this 
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chapter, we will take a look at software and other online tools used in this study. We will 
discuss the basic concepts of the study, how the analysis was performed using different 
software and the interpretation of results.  

1.1 Gene mapping using families 
One of the greatest challenges for geneticists is the identification of genes responsible for 
complex disease. Unlike classical Mendelian disorders, these diseases do not show obvious 
Mendelian patterns of inheritance and involve complex interactions between various 
environmental and genetic factors. Confounding factors such as heterogeneity, phenocopies, 
genetic imprinting and penetrance further complicate the identification of susceptibility genes.  
When performing a genetic study, correlation between phenotype and genotype is sought. 
In complex traits, this correlation might be very low due to incomplete penetrance where 
not all individuals having the same susceptibility allele are affected or where affected 
individuals do not have a susceptibility allele (phenocopies). These factors lead a wide 
ranging severity of disease even within a single family. Further more, late onset diseases 
such as cardiovascular disease and osteoporosis show up later in life and thus unaffected 
individuals tested today might become affected in the near future. Late onset diseases are 
more sensitive to environmental (mostly lifestyle related) factors and are observed to have a 
higher level of genetic variation due to weak selective pressures on these variants that are 
usually neutral early in life (Wright et al., 2003). Besides testing for a qualitative trait where 
individuals are grouped as either having or not having the disease, one can use quantitative 
or a continuous measurement such as BMD. When using a quantitative variable one must be 
very cautious as it might not completely correlate with the disease and it could also be 
dependent on a number of other non-genetic factors including limitations of methodology. 
Complex disorders are most often polygenic where multiple genes contribute to the 
phenotype. Complex patterns of inheritance might be due to allelic or locus heterogeneity 
where different variants within the same gene are responsible for the disease or where a 
number of different genes are involved in the same biological process. When studying 
complex disorders, therefore, one is looking for susceptibility alleles at multiple loci that 
together increase the individual’s risk for the disease. In polygenic traits, penetrance is 
determined by the genotypes of other loci and therefore it is likely to be low and will vary 
between individuals. To increase the chance of successful gene mapping, it is important to 
identify families from probands with extreme phenotypes, earlier age at onset or else to 
study families from an isolated population with a very high incidence of disease. Wright 
and colleagues (2003) suggested that it is important to identify genes with the largest 
contribution to the extremes of the trait and avoid quantitative trait loci (QTL) that have 
minimal effects on the individual or disease mechanism.  Using single extended families 
from populations that are homogeneous and consanguineous has proven to be a successful 
approach in localising the genes and novel mutations in type 2 diabetes (Kambouris, 2005). 
Using one extended family, Kambouris reported similar results to those obtained from 
previous genome-wide scans using hundreds of individuals (Hanson et al., 1998). This 
shows that costs and time to identify novel genes responsible for complex disorders can be 
significantly reduced, when using extended and consanguineous families coming from 
homogeneous populations. 

1.1.1 Linkage analysis  
In linkage analysis, the non-independent co-segregation of marker and disease locus is 
tested in families with multiple affected individuals. Linked alleles (marker with disease- 
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causing allele) on the same chromosome segregate together more often than expected by 
chance; i.e. against Mendel’s law of independent assortment. Gene mapping of a trait 
identifies chromosomal loci that are shared among affected individuals and that differ 
between affected and non-affected family members. Positive linkage can only be obtained 
for marker alleles inherited together with disease allele on the same chromosome. This is a 
major limitation for linkage analysis when different disease alleles present at the same locus 
are on different chromosomes, hence in trans, as in a case of coeliac disease (Vidal et al., 
2009a). In this study, no evidence of linkage was observed to the human major 
histocompatibility complex (MHC) locus on chromosome 6, in a family with high incidence 
of celiac disease. Further investigations showed that this was because inherited risk alleles 
coding for HLA group DQ2.2 occur in trans and so cannot be detected by linkage.  
For a linkage study family members from pedigrees with normal and osteoporotic 
individuals are genotyped for a set of polymorphic markers either across the whole genome 
or at specific chromosomal loci, where known candidate genes are located. Genetic linkage 
is measured by the recombination fraction that is the probability that a parent will produce a 
recombinant offspring and is dependent upon the distance between loci. The more distant 
two markers are from each other the higher is the chance that a recombination event occurs 
between them during meiosis. The recombination fraction theta (θ) ranges from 0 for 
completely linked markers to 0.5 for unlinked loci. Genetic linkage is measured in 
centiMorgans (cM), where 1cM represents 1% recombination or θ = 0.01 that is equivalent to 
1 million base pairs. So using the recombination fraction one can calculate the physical 
distance on the chromosome, although recombination rates might vary depending on 
location on chromosome. Recombination rate is usually lower closer to the centromere. Also 
these measurements might not be so accurate for longer chromosomal distances where 
multiple crossovers might occur during a single meiotic event, a phenomenon known as 
interference. Two mapping functions to convert recombination fraction into map distance 
are Haldane’s, that does not assume interference, and Kosambi’s, which assumes 
interference as 1 - 2θ.  

1.1.2 Parametric linkage analysis 
Parametric linkage analysis is a statistical approach using the logarithm of the odds ratio 
(LOD score) to assess the strength of linkage. This is also known as a model based linkage 
where the mode of inheritance, frequencies of disease and marker loci together with 
penetrance must be known. The statistic assumes the likelihood (or probability) that a 
disease and marker loci in a family are not inherited together (θ = 0.5) compared with the 
likelihood that they are linked over a selected range of recombination fractions (θ range of 0 
to 0.5). The LOD score is the base ten logarithm of the likelihood ratio that is calculated for 
each value of θ. A two point LOD (z) score (between disease locus and marker) is calculated 
using the following equation: 

 z(x) = log10 [L(θ=x) ÷ L(θ=0.5)] (1) 

where x is a value of recombination fraction and L is the likelihood. 
Significant evidence of linkage is taken at a LOD score of 3.0 or higher and linkage is 
completely excluded with a LOD score of -2.5. A LOD score of 3.0 corresponds to odds of 
1000:1 that means that it is 1000 times more likely that the alternate hypothesis in favour of 
linkage holds while a LOD score of 3.5 is equivalent to odds of 3162:1. The LOD score can be 
converted to a chi-square statistic by simply multiplying by 4.6 and calculating a p-value at 
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1 degree of freedom (df) for ordinary LOD and at 2 df for heterogeneity LOD scores 
(HLOD), under the null hypothesis (Ott, 1991). The p-values obtained are always divided by 
2 for one-sided tests except when calculating p-values for multi-point LOD (MLOD). Using 
these calculations a LOD score of 3.0 is equivalent to a p-value of 0.0001 while that of 3.6 is 
equivalent to 0.00002. However, a chi-square derived p-value applies more for large sample 
sizes and can be underestimated when sample size is too small. Lander and Kruglyak (1995) 
suggested that linkage must be reconfirmed by other independent investigators where a 
nominal p value of 0.01 would be required, while they advised caution when reporting LOD 
scores that are less than 3.0 and so are only suggestive of linkage. In case of suggestive 
linkage, additional family data would be required before conclusions can be drawn (Lander 
& Kruglyak, 1995). 
LOD scores can be influenced by a number of factors including the phase or whether 
parental genotypes are known, misspecification of disease and marker allele frequencies, 
penetrance, heterogeneity and mostly by phenotypic misclassification. Also for more 
accurate linkage information and to better localize the disease gene, multi-point linkage 
analysis is preferred over two-point analysis. Statistical analyses in complex pedigrees are 
carried out using software such as MLINK and GENEHUNTER where the LOD score can 
also be adjusted for locus heterogeneity (HLOD) (Kruglyak et al., 1996). 
Another kind of analysis which is thought to be useful when analysing linkage data for 
complex traits is the MOD-score. In complex traits both the genetic model and disease allele 
frequency are very difficult to specify correctly. An incorrect assumption of the genetic 
model can significantly affect the analysis and can lead to a false negative result. The MOD 
score is calculated by maximising the LOD score over a number of replicates using different 
penetrances and disease allele frequencies, to obtain a maximum LOD score using the best 
genetic model (Strauch et al., 2003). To control type I errors, it was found that a MOD-score 
of 3.0 should be adjusted by a value ranging from 0.3 – 1.0 where it was proposed that a 
MOD-score of 2.5 is indicative of suggestive linkage (Berger et al., 2005). MOD-score 
analysis can be used to determine the best genetic model for those regions indicated by an 
initial genome scan using ordinary LODs and it can also be calculated assuming paternal or 
maternal imprinting. When assuming imprinting a heterozygote paternal penetrance is also 
used with the other three penetrances with a total of four penetrance values. If a low 
heterozygote frequency is calculated for paternal imprinting, it indicates that maternal genes 
are preferentially expressed at that locus (Strauch et al., 2005; Berger et al., 2005). 

1.1.3 Non-parametric linkage analysis 
Since the mode of inheritance for complex disorders is uncertain, evidence of linkage might 
be missed by using the LOD score method described above. A more appropriate approach is 
that described by Kruglyak et al (1996) known as a non-parametric linkage (NPL) or a model 
free analysis. The NPL statistic measures allele sharing among affected relative pairs (ARP) 
and/or affected sib-pairs (ASP) within a pedigree. By chance it is expected that siblings 
share zero, one or two marker alleles identical by descent (IBD) with a probability of 0.25, 
0.50 and 0.25, respectively. If disease and marker alleles are linked then affected siblings will 
share these alleles more frequently than expected by chance regardless of the mode of 
inheritance. Comparison between expected and observed allele sharing between ASPs is 
then analysed using the chi-square statistic. Highly heterozygous markers, multipoint 
linkage and genotyping of non-affected siblings when parents are not available help to 
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increase the sharing information. One great advantage of the NPL statistic is that data from 
markers on a chromosome can also be evaluated in a multipoint approach using software 
such as GENEHUNTER which uses the Lander-Green algorithm to calculate IBD 
distribution (Kruglyak, 1996). 

1.2 Phenotype definition, selection of family and population 
1.2.1 Phenotype 
Phenotype definition is one of the most important factors and should be determined by 
proper diagnosis or exclusion of other medical conditions that could lead to the same 
disease. To exclude disease and other factors leading to secondary osteoporosis, individuals 
were asked to answer a questionnaire and a series of other medical tests were performed. 
Measurement of bone mineral density (BMD) together with t-scores (number of standard 
deviations from the mean BMD of a control group of young women at peak bone mass) is 
the gold standard to diagnose osteoporosis, as recommended by World Health Organisation 
(WHO). However, this methodology does not show the whole picture partly because bone 
strength, thus fracture risk, is not completely assessed by measuring bone density. Also, 
individuals with normal BMD, who might become osteoporotic in ten or twenty years time, 
could still carry the responsible allele. As discussed above, miss-classification of affected 
status might seriously affect the results obtained by statistical analysis. To overcome this 
issue, and unlike other linkage studies for osteoporosis, we used different thresholds of t-
scores and z-scores at the lumbar and femoral sites obtained after measuring BMD, to define 
discreet phenotypes as simply affected or not-affected. Statistical analyses were performed 
in five different scenarios defining discreet phenotypes using the guidelines suggested by 
the International Society of Clinical Densitometry (Khan et al., 2004).  

1.2.2 Families 
Extended families with a number of affected individuals are ideal for identifying variants 
with higher penetrance but are less frequently found in populations. Development of novel 
treatments can be targeted to these pathways. Factors such as mode of inheritance, 
penetrance and disease or allele frequencies together with technical factors such as accuracy 
of genotyping, all affect power to detect a significant linkage.  

1.2.3 Population 
The genetic component within a population is strongly affected by its history and 
demography. The genetic pool of a population is determined by mutations, population 
admixture as well as by random genetic drift that occurs most often due to catastrophic 
events that result in a major decrease in population (Wright et al., 1999). Genetically isolated 
populations (by geography and/or culture), that recently expanded from a very small 
number of founders with occasional interbreeding with other ethnic groups, are more likely 
to share haplotypes identical by descent (IBD) over longer genetic distances (Wright et al., 
1999). 
The present Maltese population, although geographically (but not genetically) isolated, is 
thought to have expanded exponentially from a much smaller population during the last 
four hundred years with a possibility of a number of founder effects introduced by 
admixture with other populations coming from Sicily, the eastern Mediterranean and 
northern Africa. Founder effects were reported in the Maltese population, including a 
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mutation (R1160X) found in the NPHS1 gene coding for nephrin that causes nephrotic 
syndrome (Koziell et al., 2002) and the 68G>A mutation within the quinoid 
dihydropteridine reductase gene that causes a rare form of hyperphenylalaninaemia and 
phenylketonuria (Farrugia et al., 2007). The introduction of founder effects and major 
bottlenecks may increase the chance of creating sub-populations with particularly high 
allele frequencies when compared to the rest of the population (Heiman, 2005). Significant 
fluctuations in the population were brought about by emigration of the Maltese in fear of 
further attacks by the Turks, death by famine or plague. On the other hand, the existence of 
a relatively frequent disease in an island population does not necessarily always indicate a 
possible founder effect since this might result from multiple mutations in a single gene or in 
different genes that could lead to the same phenotype (Zlotogora, 2007).  
Genetically isolated populations proved to be very useful for the identification of genes not 
only in the case of the BMP-2 gene in Iceland but also for a number of other diseases 
(Styrkarsdottir et al., 2003). More than 15 mutated genes were successfully identified by 
positional cloning in families from the isolated population of Finland. The Finnish 
population demographic history was characterised by rapid expansion from a much smaller 
population with a number of founder effects (Peltonen, 2000). Another island population 
that proved successful for the identification of a mutation responsible for uric acid 
nephrolithiasis by linkage was the Sardinian population (Gianfrancesco et al., 2003). Linkage 
studies in Maltese families resulted in successful identification of rare genetic variants 
responsible for other human disorders such as coeliac disease (Vidal et al., 2009a), epilepsy 
(Cassar, 2008) and recently in the identification and confirmation of the role played by the 
erythroid transcriptional factor KLF1 in hereditary persistence of foetal haemoglobin (Borg 
et al., 2010). 

2. Materials and methods 

2.1 Patient recruitment 
Two extended families consisting of a total of 27 family members with several individuals 
having low BMD were recruited for this study. Families were selected through index 
patients (or probands) referred to the Bone Density Unit, Department of Obstetrics and 
Gynaecology, St. Luke’s Hospital, Malta for an osteoporosis risk evaluation. The proband in 
Family 1 was a 61-year-old female diagnosed with osteoporosis six years earlier and was 
known to have a family history of osteoporosis. Five out of seven of her siblings were 
recruited while the other two were not willing to participate in the study. Osteoporosis was 
confirmed in all six recruited siblings. All female siblings were osteoporotic at the lumbar 
spine and one male was osteoporotic at the femoral neck. One sibling had an asymptomatic 
compressed vertebral fracture. Three daughters of the proband were recruited (age range 33 
– 38 years) and all of them were found to have very low BMD for their relatively young age. 
Their 37-year-old cousin was also found to have very low BMD at both the lumbar (t-score -
2.25) and femoral neck (t-score -1.07), and had very low body mass index (BMI) (16.2 
kg/m2). It was not possible to collect blood for DNA analysis from this participant. 
The proband in Family 2 was a 55-year-old woman with osteoporosis at the lumbar spine, 
diagnosed five years earlier. A closer investigation of this family revealed four osteoporotic 
siblings out of five. Their children were healthy young adults, some of whom had very low 
BMD relative to their age. The presence of males with low BMD and history of fractures in a 
severely osteoporotic sibling were good indicators that a genetic factor might be involved.  
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As already discussed, five different scenarios were tested using thresholds for t-scores and 
z-scores as previously described (Khan et al., 2004). Osteoporosis for post-menopausal 
women and men over fifty years of age was defined using a lumbar and/or femoral t-score 
of less than -2.50 (WHO criteria). Definition of affected status for younger individuals was 
determined using z-scores of less than -1.0 and less than -2.0 for a more severe phenotype, 
for scenarios III and IV, respectively. For scenario V, analysis was performed using only 
affected individuals having femoral z-scores of less than -1.0. In all five scenarios, family 
members having normal BMD measurements were assumed to have an unknown 
phenotype. This assumption takes into consideration the possibility that any apparently 
clinically unaffected individual might actually be affected, thus reducing the chance of 
obtaining false negative results. 

2.2 Genotyping 
To perform a successful gene mapping study, a number of polymorphic markers have to be 
typed in affected and non-affected individuals to identify genes that increase the risk of 
disease. Different types of genotyping markers were used in recent years and new 
techniques for typing are constantly being developed to increase efficiency, accuracy and 
throughput while reducing costs. 

2.2.1 Microsatellite genotyping 
Short tandem repeats (STRs) or microsatellites are widely distributed in the genome and so 
are useful tools for genome-wide scans. These tandem repeats can be dinucleotide, 
trinucleotide or tetranucleotide repeats where polymorphisms are generated by gain or loss 
of repeats usually as a result of both replication slippage and point mutation. Microsatellites 
have several advantages for typing, the most important of which is that they are highly 
polymorphic with a very high heterozygosity (>70%), so making them ideal for use in 
linkage studies. Another advantage is that they can be very easily typed using PCR 
techniques where fluorescently labelled primers flanking the polymorphic region are 
designed. The variable number of repeats creates amplicons of different sizes which can be 
typed using automated sequencers such as those by Applied Biosystems (ABI) (PE Applied 
Biosystems Division, Foster City, CA). Different sets of markers across the whole genome 
are electronically available from databases such as those of Marshfield Institute of Genetics 
(http://research.marshfieldclinic.org/genetics/), deCode (http://www.decode.com/ 
services/microsatellite-genotyping-genome-wide-scans.php) and the Cooperative Human 
Linkage Centre (http://gai.nci.nih.gov/CHLC/). Markers can be selected from these 
databases either across the whole genome or at candidate loci usually with an average 
spacing of 10cM and for a higher resolution at < 5cM.  To increase throughput and reduce 
costs, the amplified fragments are carefully pooled in sets in such a way that the allele size 
range does not overlap within a set and by using different dyes for different sets.  
An initial genome-wide scan, 400 microsatellite markers spread across the 22 autosomes and 
x-chromosome with an average spacing of 8.63cM and heterozygosity of 0.77, was 
performed. The average performance of markers for all samples was of 96.96%. Fine-
mapping was performed by increasing the markers at indicated loci from the initial scan. 
Genotyping was performed by polymerase chain reaction (PCR) followed by fragment 
analysis using a 3730xl ABI genetic analyser (Applied Biosystems, Foster City, CA, USA). 
The average performance of the markers was of 96.02%. Genotyping was performed 
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commercially at the McGill University and Genome Quebec Innovation Centre, Quebec, 
Canada.  

2.3 Analysis of linkage data  
PedCheck (O’Connell and Weeks, 1998) was used to determine if the inheritance of marker loci 
was according to Mendel’s laws. Multipoint parametric and non-parametric linkage analyses 
were performed using GENEHUNTER-PLUS (Markianos et al., 2001) which is an improved 
version of GENEHUNTER (Kruglyak et al., 1996). GENEHUNTER v1.2 was used to calculate 
Zlr scores according to Kong and Cox (1997). Linkage analysis of markers on the X-
chromosome was performed using a specific application for this chromosome included with 
the GENEHUNTER package. All analyses were performed using EasyLinkage v5.05 
(http://www.uni-wuerzburg.de/nephrologie/molecular_genetics/molecular_genetics.htm) 
(Lindner and Hoffmann, 2005). Parametric analysis was carried out using variable 
penetrances for both a dominant and recessive mode of inheritance. Penetrances used for 
the dominant model were 0.01 for the wild-type homozygote, 0.90 for mutant heterozygote 
and 0.90 for mutant homozygote, respectively. The recessive model was defined by 
penetrances 0.01, 0.01, and 0.80 for the wild-type homozygote, mutant heterozygote and 
mutant homozygote, respectively. A more complex model was also analysed using 
penetrances 0.01, 0.05, 0.30 for wild-type homozygotes, mutant heterozygotes and mutant 
homozygotes, respectively. A parametric analysis assuming heterogeneity was computed 
using data from both families (HLOD). 
A co-dominant allele frequency algorithm was used for the analysis, as suggested in the 
EasyLinkage manual, for extended families. For all models, the disease allele frequency 
assumed was 0.001, and phenocopy rate of 1%. This disease allele frequency is equivalent to 
a population prevalence of 0.2% assuming Hardy-Weinberg equilibrium calculated using 
the following equation (Xu & Meyers, 1998):  

 2(1 – q) q + q2 (2) 

q = disease allele frequency. 
Analysis was performed using other penetrance values for loci showing evidence of linkage 
in the initial genome-wide scan. The exact genetic model was determined using 
GENEHUNTER-MODSCORE v1.1 (Strauch et al, 2005), where MOD scores were calculated 
from simulations of different models and disease allele frequencies with and without 
imprinting. This analysis was suggested by Strauch et al (2003) for complex trait analysis 
and was done only for those regions showing suggestive linkage. The deCode genetic map 
was used throughout the study. 

2.3.1 Using EasyLinkage v5.05 graphical user interface (GUI) 
EasyLinkage is a Microsoft Windows® based GUI, developed in recent years. This was a 
step forward for researchers wanting to perform linkage analysis. Using EasyLinkage and a 
common input file format, one can analyse data using all major software such as PedCheck, 
GENEHUNTER, Merlin and Allegro. EasyLinkage can be used to analyse data generated 
from projects using both single nucleotide polymorphisms (SNPs) as well as STRs. Analysis 
can be performed on chromosome by chromosome or else genome-wide basis, making use 
of the appropriate genetic maps (such as deCode and Marshfield), using male, female or 
sex-averaged maps, from which more accurate genetic positions can be drawn. Both 
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graphical and text output files are automatically generated for each individual family 
together with a collective report averaging all families, in text or pdf formats and stored into 
an appropriately labelled folder showing date and type of analysis. These files show 
statistical analyses results such as LOD scores, NPL, p-values and input parameters given 
by the user for that model including penetrances, disease allele frequencies and genetic 
positions of markers ranked according to the most significant results. 
There are four allele frequency algorithms to choose from depending on the type of analysis 
needed. Several versions of this software have been developed, improving its capabilities to 
handle large amounts of data generated from SNP arrays such as the Affymetrix 500k and 
Illumina 650k chips. For SNP analysis, allele frequencies of all the major ethnic groups form 
part of the EasyLinkage software package.  

2.3.2 Data entry 
There are two main types of files needed to perform linkage analysis using microsatellites or 
STRs. In this study, a qualitative type of analysis was performed using discrete phenotypes 
(affected vs unaffected). One type of input file should contain family or families’ information 
in a standard linkage format. The marker file should include the genotype results for each 
family member. All family or families’ information including pedigree structure has to be 
entered into a pedigree file. Shown below is part of the pedigree file as created in our study 
(only obligatory columns were used). From left to right columns represents (i) unique family 
identifier; (ii) individual unique identifier (iii) father and (iv) mother identifiers; (v) sex 
identification code (1=male, 2=female, 0=unknown); (vi) affected status (1=unaffected, 
2=affected, 0=unknown). In case parents are unknown then enter ‘0`. As explained previously 
is an unknown phase and so it reduces the power of the study, even though the software is 
able to assume the genotypes of these individuals using the known genotypes from their 
offspring (inferred genotypes). An example for using the unknown option in column (v) is 
when you do not know the sex of a child due to death in utero. 
 

A_1 A_1_01 A_1_11 A_1_12 2 2 
A_1 A_1_02 A_1_11 A_1_12 1 2 
A_1 A_1_03 A_1_11 A_1_12 2 2 
A_1 A_1_10 0 0 1 0 
A_1 A_1_11 0 0 1 0 
A_2 A_2_11 A_2_28 A_2_29 1 1 
A_2 A_2_12 A_2_28 A_2_29 2 2 

 
Phenotype definition has to be done using appropriate criteria and diagnostic tests, for 
example in our study, measurements of BMD together with blood tests were used to exclude 
other medical conditions that could also affect BMD. In complex disorders, it might be 
difficult to define the phenotype correctly and this could seriously affect the outcome of 
results. Select 1 and 2 wherever diagnostic tests were performed and phenotype is known. 
Any individuals not tested should be defined as having an unknown status. This is a better 
option because individuals wrongly defined as normal could give a false negative result 
(type II error) as these might be carrying the causative alleles and might become affected at a 
later stage in their life. As described in the phenotype definition section, we analysed our 
data using five different scenarios defined by t-scores and z-scores. For each scenario a 
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different pedigree file was created and saved in a folder together with the marker files 
described in the next section.  
Creating marker files 
Marker files should include genotyping results for all family members tested. Entering data 
is the most laborious part of the study because different files have to be created for each 
marker, i.e. if 400 markers were tested then 400 different marker files have to be created and 
saved in the same folder together with pedigree files. These files should be named with the 
marker identification corresponding with that in the marker map file (.map) used by the 
software e.g. ‘D1S200_FINAL.abi`. If the marker is not found within the marker map file 
then an error is given when running the analysis. This error can be corrected manually by 
adding the marker into the marker map file found in the EasyLinkage folder in Program 
Files.  
This is an example of the method used to input data into marker files: 
 

MARKER LANE ID A_1 A_2 
D1S200 A1 A_1_01 165 176 
D1S200 A2 A_1_02 161 176 
D1S200 A3 A_1_03 165 176 
D1S200 A4 A_1_04 161 176 
D1S200 A5 A_1_05 161 176 
D1S200 A6 A_1_06 161 176 
D1S200 B1 A_2_10 161 176 
D1S200 B2 A_2_11 161 176 
D1S200 B3 A_2_12 161 161 

 
Column (i) name of marker e.g. D1S200; (ii) PCR reaction position in a 96-well PCR plate 
(information not used by software); (iii) individual identification number corresponding 
with pedigree file; (iv) allele 1 in base pairs (bp) and (v) allele 2 in bp. Any missing 
genotypes should be entered as ‘0`. When analysing data, the software will re-code these 
alleles numbering them consecutively as 1, 2 etc depending on the number of alleles 
observed for that marker in all genotyped individuals. The higher the number of alleles 
observed the higher the heterozygosity and thus the more informative that marker is.  

2.3.3 Running EasyLinkage analysis 
On the main screen of the GUI, we selected a ‘Single Locus` analysis, the linkage software 
(GENEHUNTER) and microsatellites project type. Next step was to select whether to 
perform a genome-wide analysis, one chromosome at a time or even to analyse small 
segments from a chromosome. Analysing small segments from a chromosome is useful to 
analyse large scale SNP data possibly analysing 500 markers in one segment. A lower LOD 
score was observed when analyzing a large number of markers, which would mean that for 
SNP analysis, it is better to avoid SNPs that are very close to each other. LOD scores were 
observed to be lower in such instances most likely due to allele frequencies used. It would 
be advisable to first analyse the whole chromosome for SNP analysis, and if significant 
results are observed, then re-analyse blocks of 100 markers at a time and as overlapping 
blocks. Another suggestion would be to use different and appropriate allele frequency 
algorithms, as will be described below.  
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After choosing the chromosomes, the sex-averaged deCode genetic map was selected to 
position the markers. There is a difference of approximately 10 cM between the male and 
female genetic maps, being longer in females due to a higher recombination rate. Other 
general options selected included ‘recode alleles` for continuous recoding of alleles within 
the marker files, Mendelian testing using PedCheck and the autoscale Y-axis  for LOD / 
NPL plots. 
Finally we chose the folder where the pedigree files were saved and the option to give 
individual pedigree results as well as totals. As decribed earlier, five different phenotype 
scenarios were used and each one had to be analysed using a different pedigree file. 
GENEHUNTER (GH) 
This computer package was developed to perform multipoint linkage analysis (parametric 
and non-parametric) in pedigrees of moderate size (Kruglyak et al., 1996). The program can 
compute LOD scores for pedigrees using a mode of inheritance and penetrance specified by 
user. It also allows the user to test for linkage under genetic heterogeneity. The multipoint 
NPL analysis tests for IBD allele sharing among affected individuals within pedigrees that is 
not affected by the mode of inheritance. It is thus ideal to be used for complex traits. GH 
also constructs the most likely haplotypes indicating crossovers even if there is missing data. 
A major advantage of GH over other statistical software, such as VITESSE and MLINK, is 
that it uses the Lander-Green algorithm and therefore it can perform multipoint analysis 
using several markers on a chromosome. Major drawbacks of GENEHUNTER include 
restrictions on pedigree size and its relatively slow speed when compared to similar 
software such as Allegro. Another limitation of GENEHUNTER is that it cannot analyse 
large number of markers which means that if one was analysing more than 100 markers on 
same chromosome, one would have to analyse these in groups of 100, repeating the analysis 
with different set sizes so as not to miss the signal. A recent version of GH can also perform 
transmission disequilibrium testing (TDT) analysis and analysis of quantitative traits 
making GH the ideal software to use for genetic analysis (Nyholt, 2001). In this study 
GENEHUNTER v1.2 was used to calculate Zlr scores using the Kong and Cox (1997) model. 
This algorithm addresses the problem encountered by previous versions of GENEHUNTER 
where NPL scores were found to be too conservative when inheritance data was incomplete. 
Another application used in this study was GENEHUNTER-MODSCORE v1.1 that 
maximises LOD scores with a series of penetrances and disease allele frequencies (Strauch et 
al., 2005).  
Using GENEHUNTER (GH) with EasyLinkage GUI 
Performing linkage analysis using GH through the Easylinkage GUI is easy and 
straightforward and saves time. After choosing the GENEHUNTER package software as 
described above, one has to go to Program Options from the main dashboard to be able to 
define a model for analysis. We analysed our data using both dominant and recessive 
models of disease. GENEHUNTEr v1.2 and GENEHUNTER-MODSCORE v1.1 were used 
for the analysis. A ‘Codominant` allele frequency algorithm was used for our analysis. 
EasyLinkage gives you four different algorithms to choose from. The Codominant algorithm 
was the best choice to use for extended families. This algorithm uses only alleles from 
genotyped individuals within the pedigree file. Frequencies of the alleles are calculated to 
sum up to 1, which means that if 5 different alleles were observed, then the allele frequency 
for each allele will be set to 0.200 or if 10 then to 0.100. If less than 5 alleles are found then 
still the frequency is set to 0.200. Other allele frequency algorithms include either all 
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individuals within the marker file or all individuals from pedigree file, both suitable for the 
affected sib pair (ASP) design. There are also specialised algorithms such as ‘founders only`, 
suitable only for pedigrees with large number of founders. SNP projects will use reference 
allele frequencies from different ethnic groups.  
As described before, we analysed our data using variable penetrances of disease starting 
with a highly pentetrant form (90%) down to 50%, for each scenario. Disease allele 
frequency was taken as 0.001 and the analysis steps between markers for multi-point 
analysis were set to 5, with recombination counting set to ‘On`. Penetrances were entered 
into the appropriate fields as described before, turning the haplotyping options to ‘on` and 
choosing the ‘Display all family plots`. The haplotyping option significantly increases the 
run time of the analysis but it creates plots for each family with haplotypes and marker 
positions together with other files that can be used by other software such as HaploPainter 
(Thiele & Nurnberg, 2004).  

3. Results 

3.1 Reading analysis files 
All analysis files were saved into an appropriately labelled folder with details of software 
used, allele frequency algorithm, pedigree file name, date and time of analysis. Data was 
saved as text and post-script format. The ‘.OUT` file within the ‘LOG` folder can be opened 
using Notepad where one can find all commands given to GENEHUNTER by EasyLinkage. 
If any errors were encountered and analysis was not completed, then one would find all 
information logged in, within this file. This file also includes detailed results such as LOD / 
NPL scores, marker information etc for each individual family and totals for all the families. 
EasyLinkage automatically commands GENEHUNTER to set up the maximum number of 
bits to be analysed within the family and to ‘trim` large families when needed. These two 
functions are needed to keep computations within the computer running ability due to 
memory limitations. Max Bits function is dependent on the number of meiosis being 
examined and represents 2N – F, where N is the number of non-founders and F is the 
number of founders. If, in the family there are 10 children (non-founders) from 2 sets of 
parents (4 founders), then max bits will be set to 16. If the family is larger, then the less 
informative individuals will be excluded from the analysis using the ‘trim` command. 
Automatically EasyLinkage also commands GENEHUNTER to use the Haldane map and 
there is no option to use the Kosambi map. The Haldane map does not assume interference, 
as described in a previous section. 
Figure 1A, shows the upper left hand quandrant of a parametric LOD score plot, including 
information such as allele frequency algorithm used, inheritance model, allele frequencies and 
penetrancies expressed as percentages. Markers are ranked in order of their most significant 
LOD / NPL scores with information about chromosome number, their position on the genetic 
map and calculated probability (Figure 1B). Figure 1C shows NPL results for a genome-wide 
analysis with NPL scores on the y-axis and chromosomal marker positions on the x-axis. Other 
plots are given for LOD scores, HLODs, p-values, Zlr scores and marker information. 
If the haplotyping option was chosen then a folder named ‘Haplotyping` is created and 
haplotype files for each pedigree are saved there. This haplotype data can then be imported 
to other software such as HaploPainter (Thiele & Nurnberg, 2004) to construct a graphical 
representation of the inherited haplotypes.  
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Fig. 1. Information given by parametric LOD score analysis plots (A & B) and genome wide 
NPL plot (C) 

3.2 Linkage results 
From the initial genome-wide scan using both families, evidence of linkage was observed to 
marker D11S1392, where the highest NPL score was of 5.77 (p=0.0006) and LOD/HLOD of 
2.55, for the dominant model with 90% penetrance and phenocopy rate of 1%. Fine mapping 
was performed by analysing four additional markers at this region (D11S4101, D11S935, 
D11S4102, and D11S1911) with average spacing of 1 to 1.5cM. Fine mapping confirmed 
linkage to marker D11S935 that is 52.94cM from 11p-telomere. Table 1 shows the highest 
scores obtained for this marker using the dominant mode of inheritance with 90% 
penetrance and phenocopy 1%. HLODs are calculated when more than one family are 
analysed together and thus the score can be different from the LOD if there is heterogeneity 
between families.  
Table 2 shows results obtained when analysing the same families assuming clinically 
unaffected individuals, whose BMD was measured by DEXA, as normal phenotype 
(according to WHO criteria) rather than having unknown phenotype (as in Table 1). NPL 
and Zlr scores were the same as observed in Table 1, but LOD and HLOD scores were 
different. 
LOD scores shown are for the autosomal dominant model with 90% penetrance and 1% 
phenocopy rate. 
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Phenotype LOD (cM) HLOD (α) NPL (p-val) Zlr 
Scenario I 2.90 (52.94) 2.90 (1.00) 7.00 (0.0014) 3.01 
Scenario II 2.46 (52.94) 2.46 (1.00) 4.02 (0.0038) 2.90 
Scenario III 2.89 (52.94) 2.89 (1.00) 7.23 (0.0013) 3.04 
Scenario IV 3.35 (52.94) 3.35 (1.00) 6.90 (0.0002) 3.74 
Scenario V 2.59 (52.94) 2.59 (1.00) 5.37 (0.0020) 3.28 

deCode map position in brackets in cM 
Table 1. Highest scores for marker D11S935 in both Pedigrees using an Autosomal 
Dominant Model after Fine Mapping 

This is because in the second analysis, shown in Table 2, based on current BMD 
measurements were defined as normal, individuals that might be osteoporotic in the future. 
These individuals might also be carrying the inherited causative allele and so will result in a 
false negative result if taken as normal. This is a common situation with complex and late 
onset disorders such as osteoporosis. 
 

Phenotype LOD (cM) HLOD (α) NPL (p-val) Zlr 
Scenario I  3.07 (52.94) 3.07 (1.00) 7.00 (0.0014) 3.01 
Scenario II  -0.19 (52.94) -0.00 (0.00) 4.02 (0.0038) 2.90 
Scenario III  2.97 (52.94) 2.97 (1.00) 7.23 (0.0013) 3.04 
Scenario IV 2.80 (52.94) 2.80 (1.00) 6.90 (0.0002) 3.74 
Scenario V  1.26 (50.64) 1.26 (1.00) 5.24 (0.0020) 3.28 

Table 2. Analysis of Chromosome 11 in Both Families Assuming Unaffected Individuals as 
Normal  

When calculating MOD scores for chromosome 11, the highest MOD was of 3.28 at the 
same region 52.94cM using the best calculated genetic model with penetrances 0.06 wild-
type homozygotes (6% phenocopy rate), 0.97 for both heterozygotes and mutant 
homozygotes. The disease allele frequency calculated at this model was of 0.000006 with a 
calculated population prevalence of 0.001%, assuming Hardy-Weinberg equilibrium. A 
MOD score of 4.33 (info = 0.87) was obtained when assuming imprinting with a disease 
allele frequency of 1 X 10-6. Estimated penetrances of wild-type homozygote (f +/+) 0.00; 
paternal heterozygote (f m/+) 0.00; and 1.00 for both maternal heterozygote (f +/m) and 
mutant homozygotes (f m/m) show evidence of paternal imprinting at this locus. Paternal 
imprinting indicates that the expression of the gene responsible for the disease at this 
locus may be entirely maternal. 
This locus was further analysed by varying the penetrance and phenocopy rates for the 
dominant mode of inheritance. Analyses were performed using phenocopies from 1% to 
20% and penetrance 0.7 – 0.5. The phenocopy rate is the percentage of individuals within the 
family that are clinically affected but do not carry the disease allele and hence their 
phenotype is due to other mainly environmental factors. As shown in Table 3, the highest 
LOD/HLOD score (3.32) was observed at penetrance of 0.8 and 0.7 with a 5% phenocopy. 
Changing the penetrances and hence the model, does not affect NPL scores (since these are 
model free) and therefore NPL scores are not shown in Table 3. 



Family Based Studies in Complex Disorders: 
The Use of Bioinformatics Software for Data Analysis in Studies on Osteoporosis 

 

31 

 Family 1 Family 2  
 LOD (cM)* NPL (p-val) Zlr LOD (cM)* NPL (p-val) Zlr 
Scenario I 1.92 (54.35) 6.26 (0.0078) 2.84 1.04 (52.48) 4.42 

(0.0098) 
2.41 

Scenario II 1.35 (55.77) 3.10 (0.0313) 2.12 1.18 (52.94) 3.06 
(0.0625) 

2.11 

Scenario III 1.92 (54.35) 6.26 (0.0078) 2.84 1.04 (51.56) 4.74 
(0.0117) 

2.27 

Scenario IV 1.64 (54.35) 4.41 (0.0156) 2.58 1.77 (52.94) 5.85 
(0.0156) 

2.75 

Scenario V 0.86 (48.21) 1.94 (0.1250) 1.63 1.75 (50.64) 5.83 
(0.0156) 

2.88 

Table 3. Multipoint LOD/HLOD Scores on Chromosome 11 under an Autosomal Dominant 
Model with Variable Penetrance and Phenocopy 

Although both families shared the same linkage interval, the highest LOD scores were 
obtained by two different markers with a spacing of approximately 4cM between them, 
showing also different inherited alleles, suggesting that different genes at the same locus, 
and within the same linkage interval, might be responsible for the same disease in different 
families (allelic heterogeneity). Highest LOD and NPL scores (1.77 and 5.9, respectively) 
were obtained for marker D11S1392 (50.64cM) for Family 2, while for Family 1 highest 
scores were obtained to marker D11S4102 (54cM) (Table 4). Inherited haplotypes identical 
by descent were observed in both individual families between markers D11S1392 and 
D11S935, with a number of recombination events defining boundaries for the linkage 
interval where the causative genes can be found in between. 
 

Penetrance LOD/HLOD 
Phenocopy 
= 1% 

LOD/HLOD 
Phenocopy 
= 5% 

LOD/HLOD 
Phenocopy 
= 10% 

LOD/HLOD 
Phenocopy 
= 15% 

LOD/HLOD 
Phenocopy 
= 20% 

0.9 3.07 3.25 3.05 2.78 2.47 
0.8 3.10 3.32 3.11 2.82 2.44 
0.7 3.12 3.32 3.08 2.73 2.23 
0.6 3.14 3.30 2.99 2.54 1.80 
0.5 3.17 3.25 2.84 2.17 1.07 

Table 4. Analysis of chromosome 11 for Families 1 & 2 after fine mapping * deCode map 
position in brackets in cM 

3.3 Choosing and sequencing candidate genes 
The locus indicated by both parametric and non-parametric linkage analyses on 
chromosomes 11p12 was scanned for known candidate genes. Candidate genes within the 
linkage interval were selected with prior knowledge of physiology using the NCBI map 
viewer (http://www.ncbi.nlm.nih.gov/mapview/) Homo sapiens build 36. The online 
application GeneSeeker v2.0 (http://www.cmbi.kun.nl/GeneSeeker) was also used. A new 
online tool GeneDistiller (http://www.genedistiller.org/) was recently developed to filter 
genes within a specified linkage interval is (Seelow et al., 2008). When using NCBI 
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MapViewer to select the genes manually, one has to align the genes with the corresponding 
genetic map (e.g. deCode), setting the resolution of the map to 1 cM for accurate alignment. 
Applications such as GeneDistiller can facilitate this process since they automatically extract 
all genes within a given interval. It is also advisable to search for genes further away from 
both ends of the linkage interval even up to 5 – 10 cM. This will compensate for differences 
in positioning of markers on the genetic map and the actual physical map. 
The whole area from 49 to 55cM on chromosome 11 (deCode genetic map) was searched for 
genes that might plausibly be involved in the disease. More than twenty genes and 
hypothetical proteins are found in this region, with the best candidates being the tumour 
necrosis factor receptor-associated factor 6 (TRAF6) gene [MIM 602355] and the CD44 gene 
[MIM 107269] (sequenced in Family 2) found 1cM away from D11S1392 (~51cM).  TRAF6 
was sequenced in both families but it was closer to D11S4102 showing highest scores in 
Family 1.  
Oligonucleotide primers were designed using the online application Primer 3 
(http://frodo.wi.mit.edu/primer3/) (Rozen and Skaletsky, 2000) to amplify all coding 
regions including intron-exon boundaries and promoter region of the CD44 gene using 
transcript ENST00000278385) from the ENSEMBL database (http://www.ensembl.org). 
Transcript ENST00000313105 was used for TRAF6 gene. Due to limitations of the 
sequencing technique, only fragments from 200 to 600bp were amplified by PCR. Large 
exons and up to 1500bp of the 5` untranslated region were covered by overlapping PCR 
fragments. Bidirectional DNA sequencing was performed using standard techniques and 
fluorescent capillary electrophoresis. 

3.4 Reading and Interpretation of sequencing results 
DNA sequencing results were compared to reference sequences in public databases by using 
the software ChromasPro v1.33 (http://www.technelysium.com.au) that directly searches 
the BLAST application on NCBI. Variations that did not agree with the reference sequence 
were confirmed by the reverse sequence. Electropherograms were also printed and checked 
manually.  
Detailed information about specific genes including information about known 
mutations/polymorphisms and gene expression was obtained from GENECARDS 
(http://www.genecards.org) and The Human Gene Mutation Database 
(http://www.hgmd.cf.ac.uk/). When identifying a variation, the first step is to check using 
databases whether it is already known. Information about individual SNPs can be searched 
in gene and SNP databases such as the NCBI SNP database 
(http://www.ncbi.nlm.nih.gov/projects/SNP/). A list of SNP databases can be found at 
http://www.humgen.nl/SNP_databases.html. If the variation is a known SNP, then one 
has to refer to it using the database reference number such as ‘rs3830511`. In the database 
one can find information about individual SNPs including any population frequencies. The 
next step is to identify the frequency of these variations in the local population and 
determine whether it is a rare or common variation. To perform population screening, one 
can use techniques such as restriction fragment length polymorphism (RFLP), real-time PCR 
or direct DNA sequencing in a random sample from the general population. For our studies, 
random samples of DNA were obtained from newborns and used for this purpose, followed 
by a small scale case-control study using osteoporotic and normal post-menopausal women. 
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Virtual restriction fragment length polymorphism (RFLP) gel electrophoresis was carried 
out using the online web applications NEBcutter V2.0 (http:// tools.neb.com 
/NEBcutter2/index.php) to test the identified polymorphisms. 

3.4.1 TRAF6 Sequencing and functional assays  
Following direct sequencing, three different variants were identified when compared to 
reference sequences on the NCBI and Ensembl databases. An A to T transversion was 
identified at position -721 (5` upstream of exon 1), when compared to TRAF6 reference 
sequence (AY228337). This variant had not been previously described. Following 
sequencing of all family members, three affected individuals from Family 1 were observed 
to be heterozygous for this variant. Individuals from Family 2 were all wild-type 
homozygotes. RFLP was carried out in 82 unrelated postmenopausal women. This variant 
was observed to be very rare within an unrelated group of postmenopausal women, as only 
three heterozygotes were observed. After screening 350 chromosomes in a random sample 
from the general population, only 2 alleles were observed (0.57%) with this variant having a 
population frequency of 1.1%.  
A previously described insertion/deletion of a T in the intron between exons 4 and 5, in the 
polyT region, sixteen base pairs ahead of the exon-intron boundary (rs3830511), was also 
identified. When analysing all family members and controls, only three individuals were 
observed to be heterozygotes for this insertion/deletion, one of whom was severely affected 
and the other two were normal individuals.  
A transition from G to A was found in the intron between exons 6 and 7, 110bp upstream of 
the exon-intron boundary. When sequencing all members from both families, four 
heterozygotes for this variant were identified, and the rest were homozygous for the wild 
type allele G. Three of the four heterozygous individuals for this variant had a low BMD, 
two of whom were also heterozygous for the T insertion/deletion described above. 
Genotyping by RFLP (PvuII) was performed in 82 unrelated postmenopausal women. 
Genotype frequencies observed were 72.3% GG, 26.5% GA and 1.2% AA.  
Although the -721 A/T polymorphism was not linked to the inherited haplotype within 
Family 1, this polymorphism was rare within the population and it was thus hypothesised 
that it could affect gene expression. The TRAF6 gene plays a major role in osteoclast 
differentiation and activation and plays an important role in osteoimmunology (ref).To 
test this hypothesis the TRAF6 gene promoter region, harbouring the -721 variant, was 
analysed for possible transcriptional factor binding sites in the presence and absence of 
the variant identified in this study, using the online application MatInspector by 
Genomatix Software GmbH(http://www.genomatix.de/online_help/help_matinspector/ 
matinspector_help.html) (Cartharius et al., 2005). The whole sequence, up to 1500bp 
upstream from the transcriptional start, site was thus copied and tested using the 
MatInspector online application. Free registration was needed to use this application for 
academic use allowing twenty analyses per month. Both normal and mutated sequences 
were used and analysis was performed using a vertebrate matrix. When comparing 
normal and mutated alleles it was observed that position -721 might be a potential 
binding site for nuclear factor Y (NF-Y), a CCAAT binding factor, that binds to the wild-
type allele but not to the mutated one. Non-binding of this factor would result in a 
decreased expression of the gene.  
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Three different sized fragments from the promoter region of TRAF6 (up to 1500bp) were 
cloned into a luciferase reporter vector and transfected into two types of mammalian cells. 
After measuring luciferase activity in both cell lines, it was evident that gene expression was 
affected by the -721 variant found in the TRAF6 gene promoter. Expression of the mutated 
allele was observed to be as low as 5% that of the normal allele expressed in murine 
macrophages. The two longer constructs showed higher expression for the mutated allele 
suggesting that other transcriptional factors most likely interact either directly or with other 
factors at the mutated site. Although these observations suggest that this variant affects a 
transcriptional factor binding site and thus could increase the risk for osteoporosis, further 
research is needed to identify the molecular mechanisms. 

3.4.2 CD44 gene sequencing in family 2 
DNA sequencing of the CD44 gene found on chromosome 11p12 was performed in Family 2 
since this gene is found closer to D11S1392, which shows the highest LOD scores within this 
family, as described above. Osteoclast formation was inhibited by CD44 antibody 
suggesting its important role in bone physiology and as a potential therapeutic target for 
metabolic bone disease (Kania et al., 1997). As well, CD44 was also associated with 
inflammatory bone loss (Hayer et al., 2005). 
Sequencing CD44 revealed a number of intronic sequence variants, including two A/G 
changes (rs4756196 and rs3736812) and an A/C transversion in intron 16, none of which 
were observed to be inherited with the linked marker. A number of other variants were 
found in coding regions, including an A/G (rs9666607) and C/T (rs11607491) changes in 
exon 10, both resulting in an amino acid change,  which were not linked with the inherited 
haplotype. Another C/T synonymous variant (rs35356320) was detected in three affected 
and one unaffected individual. A non-synonymous variant found in exon 12 (rs1467558) 
was only found in two affected members of this family. 
An interesting variant was detected in exon 9, a synonymous G/A transition (rs11033026), 
found 32 nucleotides upstream from the exon/intron junction. Sequencing the gene in all 
members of this family, revealed that all individuals carrying the linked STR allele 3 (Figure 
1B) for marker D11S1392 were also heterozygous for this variant, suggesting that the two 
were linked. 
As shown in Figure 1B, all affected members, with the exception of one phenocopy 
(III:4), were heterozygous for both the STR allele and the A allele. This variant was not 
found in any of the non-affected family members, with the exception of two who also 
carried the linked STR allele (III:2 and III:7) (incomplete penetrance). The minor allele 
frequency within the Maltese population was determined to be 0.012 (1.19%) with a 
population frequency 2.38%. According to the NCBI dbSNP database 
(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=11033026), and HapMap, this 
frequency compares with that found in Sub-Saharan Africans, African-Americans and 
Han Chinese from Beijing (minor allele frequencies 0.336, 0.115, 0.012, respectively), and 
was absent in European Caucasians.  This suggests a founder effect in the Maltese 
population, complementing other previously reported studies on other human diseases 
(Farrugia et al., 2007; Koziell et al., 2002).  
Since this variant was found in an exon but does not result in an amino acid change, we 
hypothesised that it could affect pre-mRNA splicing resulting in a different protein isoform. 
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To test this hypothesis at the transcriptional level an online Bioinformatics predictive tool 
was used to identify any possible exon splicing enhancers (ESEs) at this region as described 
by Cartegne et al (2002) (http://rulai.cshl.edu/tools/ESE2/index.html) . The G/A variant 
was found to abolish an ESE motif (TGAGGA > TGAAGA) for the SR protein (SRp55) with 
a score of 2.817 (threshold 2.676), in the presence of the A allele. Another online application 
RESCUE-ESE (http://genes.mit.edu/fas-ess/) did not predict any possible ESEs at this 
locus (Wang et al., 2004).  
The experimental approach to test this hypothesis involved the use of an in vitro exon-
trapping vector where the whole exon 9 and adjacent introns were inserted into a vector 
yielding a hybrid construct made up of two vector β-globin exons flanking CD44 exon 9 and 
adjacent introns. Following transfection into mammalian cells, the construct was transcribed 
under the control of a SV40 promoter and spliced. The mRNA derived from this construct 
was extracted and reverse transcribed followed by specific amplification using cDNA as 
template and specific primers to β-globin exons (SD6 and SA2). The spliced transcripts were 
analysed by agarose gel (Vidal et al., 2009).  Our results showed that in the presence of the A 
allele only one transcript (261bp) was weakly amplified in both COS-7 and HeLa cells and 
was completely absent in RAW264.7 macrophages. DNA sequencing confirmed that this 
transcript did not contain any part of CD44 exon 9, and was entirely made up of vector exon 
sequences, suggesting skipping of exon 9.  Two transcripts were amplified in the presence of 
the G allele (378bp and 261bp). 

4. Conclusion 

In this study, two polymorphisms with a population frequency of less than 5.0%were 
identified by linkage analysis in two extended Maltese families with a highly penetrant form 
of osteoporosis. In vitro functional studies confirmed that these polymorphisms might 
increase the individual’s susceptibility to osteoporosis. This study adds to the existent 
knowledge of the complex pathophysiology involved in disorders such as osteoporosis. This 
knowledge is useful for the development of more targeted and individualised treatments. 
Our results added to the increasing evidence that rare but functional polymorphisms are 
also responsible for disorders such as osteoporosis, and also that using extended families 
with extreme phenotypes increases the chance to identify the responsible genes. Computer 
technology and the internet contribute significantly to the outcome of these studies. Both 
technologies were important tools for researchers throughout the whole study starting from 
planning and design of experiments, analysis of data and interpretation of results. 
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Glossary Allele Alternative states of genes only identical 
if their base sequences are identical 

Body Mass Index 
(BMI) 

A statistic of the relationship between 
weight and height = body weight 
divided by height squared  

Bone mineral 
density (BMD) 

A measure of bone density usually 
measured by x-ray techniques 

Haplotype A set of variants (SNPs or STRs) that are 
inherited together as a single block on a 
linear chromosome 

Imprinting Expression of genes depending upon 
the parent of origin  

Linkage 
disequilibrium 
(LD) 

Groups of markers or genes on the same 
linear chromosome that are inherited 
together more often than expected by 
chance as long as genetic recombination 
does not take place between them. LD 
can be used to locate genes associated 
with phenotype 

Locus 
Heterogeneity 

Variability of chromosomal regions 
involved between different subjects 

Penetrance The percentage of individuals that 
express a trait determined by gene/s 

Phenocopy A phenotyping change that mimics the 
expression of a mutation usually 
resulting from effects of the 
environment 

Segregate Separation of homologous 
chromosomes at random during meiosis 

SNP A difference in a single nucleotide at a 
particular DNA site 

STR Short tandem repeat variations differing 
between different individuals in the 
number of repeated sequences eg: 
(CACACA) or (CACACACACA). Used 
as markers in forensics for 
identification. 
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1. Introduction 

Gene expression regulation in a cell plays a crucial role in the cellular response to 
environmental cues and other important biological processes (Bauer et al., 2010). A major 
mechanism of gene expression regulation is the binding of transcription factor (TF) protein 
to a specific DNA sequence in the regulatory region of a gene, thereby activating or 
inhibiting its transcription (Zhou & Liu, 2004). A TF often regulates multiple genes whose 
binding sites have similar but not identical sequences (Zhang et al., 2009). There is, however, 
a short, recurring pattern among the promoter sequences called a motif, and it is this motif 
that a TF recognizes and interacts with (D’haeseleer, 2006b). It is important to identify the 
set of genes a TF modulates, called its regulon, as this will advance our understanding of the 
regulatory network of an organism (D’haeseleer, 2006b; Tan et al., 2005). One way to 
identify the regulon is to determine a TF’s motif and subsequently use the motif to search 
for other candidate genes regulated by the TF. 
Traditionally, TF binding sites (TFBSs) are determined by various experimental approaches. 
Mutagenesis, DNase footprinting, gel-shift, and reporter construct assays are common 
methods for identifying the binding sites upstream of individual genes, but the throughput 
of these techniques is low (D’haeseleer, 2006b; Ladunga, 2010). In recent years, chromatin 
immunoprecipitation (ChIP) and systematic evolution of ligands by exponential enrichment 
(SELEX) are available to study protein-DNA interactions in a high throughput manner. 
Chromatin-immunoprecipitation of DNA cross-linked to a TF can be hybridized to a 
microarray (ChIP-chip) or sequenced (ChIP-seq) to obtain the TF’s cognate binding sites on 
the whole genomic scale (Homann and Johnson, 2010; Ladunga, 2010; Stormo, 2010). SELEX 
is an in vitro technique that measures the binding affinities of TFs for synthetic, randomly 
generated oligonucleotides, usually 10-30 bp long (D’haeseleer, 2006b; Ladunga, 2010; 
Stormo, 2010). Sequences that strongly bind to a TF in question will be selectively amplified 
for later identification (Schug, 2008). 
The major drawback of experimental approaches to determine TF recognition motifs is the 
time required and the relative high cost (Zhou & Liu, 2004). Moreover, some methods have 
specific requirements. For example, ChIP requires antibodies and certain growth conditions 
under which the transcription regulator is active (Tan et al., 2005). Even if a biologist can 
satisfy the requirements, the resolution of the regions containing the binding sites can span 
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from 30-50 bp (for SELEX) to a few hundreds bp (for ChIP-chip), making the extraction of 
the consensus motif from the collected sequences not an easy task (Stormo, 2010). 
Thankfully, in recent times, a new, in silico approach to identify TF binding sites became 
available. Many bioinformatics programs—the number ranges from 120 (Wei & Yu, 2007) to 
over 200 (Ladunga, 2010)—have been created to help biologists predict DNA binding motifs 
from the enormous amounts of sequence and gene expression data generated from advances 
in high-throughput genomic sequencing and gene expression analysis techniques. 

1.1 Pattern matching and pattern discovery 
There are two types of motif searches and the type dictates which programs one uses. In the 
first type, known as unsupervised motif finding or de novo, ab initio, or pattern discovery, a 
researcher wants to know the consensus pattern in a set of orthologous genes, genes in a 
common pathway, or transcriptionally co-regulated genes or operons from an experiment 
(Mrazek, 2009). The genes presumably share some binding sequence for a common TF and 
the task is to discover the conserved, statistically over-represented motif in the regulatory 
regions (Mrazek, 2009). In the second type, known as supervised motif finding or pattern 
matching, the DNA binding motif for a TF has been determined—either predicted de novo or 
experimentally identified—and the goal is to find which other genes in the genome have a 
similar motif in their promoter (Mrazek, 2009). 
Because pattern discovery and pattern matching are fundamentally different tasks, there are 
two classes of motif prediction programs, each implementing different algorithms to solve 
their respective problem. For de novo motif discovery programs, the goal is to iteratively find 
a set of 12-20-bp sequence motifs that are most significantly similar to each other (Mrazek, 
2009), usually with an enumeration, expectation maximization, or Gibbs sampling 
algorithm. Representative programs of this class include AlignACE, MEME, BioProspector, 
MDScan and MotifSampler (Hu et al., 2005). This is the extent of our coverage on pattern 
discovery in this chapter. For more information, see Ladunga, 2010; MacIsaac & Fraenkel, 
2006; Mrazek, 2009; Stormo, 2000; and Wei & Yu, 2007. For more details on the algorithms, 
see Das & Dai, 2007; D’haeseleer, 2006a; Pavesi et al., 2004; and Stormo, 2010. 

1.2 What’s covered 
The rest of this chapter discusses pattern matching with a focus on prokaryotes. Eukaryotes 
are not covered because transcription regulation is substantially different between these two 
groups (Quest et al., 2008). Promoters of prokaryotes are typically less than 500 bp and are 
more likely to be palindromic, whereas those in eukaryotes can extend tens of thousands of 
nucleotides (Thompson et al., 2007). Another difference is that prokaryotic TFBSs are a few 
hundred bp upstream of translational start site and can overlap or appear in tandem, 
whereas in eukaryotes, they can be kilobases away (Bulyk, 2003; Yanover et al., 2009). 
Lastly, in prokaryotes, gene regulation occurs mainly at the transcriptional level (Yanover et 
al., 2009). In eukaryotes, multiple TFs coordinately bind to relatively short binding sites in 
the promoter of a single gene to regulate its expression (Thompson et al., 2007; Yoshida et 
al., 2006; Zaslavsky & Singh, 2006). Also in eukaryotes, the genome is bigger with more non-
coding sequences and the regulatory elements can be located upstream of the gene, within 
it, or even downstream of it (Bulyk, 2003). With eukaryote gene regulation being more 
complex, motif finding programs work significantly better on lower organisms than on 
higher organisms (Das & Dai, 2007). 
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The chapter is intended to be a pragmatic guide for microbiologists. As such, it does not 
cover algorithms in details and technical mathematical formulas. Instead, it presents a high-
level conceptual overview of the key concepts researchers need to know in order to 
effectively use the available bioinformatics tools to locate TF binding sites in sequenced 
prokaryote genomes. Online databases of prokaryote gene expression regulation 
information are introduced next, followed by pattern matching programs designed for or 
tested on prokaryotes. Finally, the chapter concludes by offering practical strategies and tips 
to improve the specificity and sensitivity of the results. 
Along the way, the global transcriptional regulator OmpR in Escherichia coli will be used in 
examples throughout the chapter. OmpR is a cytosolic response regulator, and together with 
the membrane-bound histidine sensor kinase EnvZ, constitute a prototypical two-
component signal transduction system in bacteria. Our lab is currently using bioinformatics 
to identify novel target genes of OmpR in the E. coli genome. 

2. Motif representation 

As mentioned before, a TF binds to different DNA sequence variations to modulate the 
expression of their target genes. This degeneracy of the binding sequences allows different 
levels of gene regulation to be achieved (D’haeseleer, 2006b). For instance, OmpR’s DNA 
binding properties fluctuate with the extent of covalent modifications, leading to changes in 
the DNA binding affinity and/or its DNA binding “signature”, and thus broadening its 
motif definition. In E. coli one of the genes regulated by OmpR, ompF, illustrates the 
transcriptional regulator’s broad recognition signature. In vivo and in vitro experiments have 
shown that two OmpR molecules bind to each of the four sites in the promoter of the ompF 
gene in a tandem manner (Harlocker et al., 1995; Yoshida et al., 2006): 
 

F1: TTTACTTTTGGTTACATATT 
F2: TTTTCTTTTTGAAACCAAAT 
F3: TTATCTTTGTAGCACTTTCA 
F4: GTTACGGAATATTACATTGC

 

Many pattern matching programs take a set of TFBS sequences, such as the OmpR binding 
sequences above, as input and internally convert it to a matrix representation for genome 
scanning. A few programs, such as MAST, require the matrix directly, which can be 
constructed using one of the matrix utility programs discussed later. 
Conceptually, a motif matrix is a table of 4 rows by n columns, where n is the length of the 
TFBS sequences, that tabulates the frequency information of the nucleotides at each position. 
The four rows correspond to the four nucleotides A, T, G, C. Each column in the table holds 
the occurrence frequency of each base at that motif position. Bases that occur more 
frequently at a position/column have a higher number. See Fig. 1(a) for the matrix 
representation of the four F1-F4 OmpR binding sequences shown above. 
The matrix in Fig. 1(a) is called a position frequency matrix. In actual practice, 
bioinformatics programs add values like pseudocounts (to avoid zero, which is undefined 
for some mathematical functions used in the algorithm) and background model 
probabilities (to account for genome differences like GC content) to each frequency number 
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(Mrazek, 2009). It is this more sophisticated matrix, called a position-specific score matrix 
(PSSM) or position weight matrix (PWM), that is actually used by pattern matching 
programs during genome scanning. See Fig. 1(b). 
Matrices are generally used to represent more degenerate (that is, less conserved) TFBS 
sequences (Mrazek, 2009). When the consensus pattern is more conserved, one may model 
the motif using the International Union of Pure and Applied Chemistry (IUPAC) codes 
(D’haeseleer, 2006a). The IUPAC system defines 11 new single-letter codes that represent 
more than one nucleotide (see Table 1). For example, the ompF binding sites could be neatly 
represented using the IUPAC alphabet as KTWWCKKWDKRDHACHWWNH [see Fig. 
1(c)]. The K is a “wild card” code for guanine or thymine; W, adenine or thymine; and so on. 
 

IUPAC code Matches Nucleotide(s) 
A A 
C C 
G G 
T T 
R A or G 
Y C or T 
W A or T 
S G or C 
M A or C 
K G or T 
H A, C or T 
B C, G or T 
V A, C or G 
D A, G or T 
N A, C, G or T 

. or - (gap) 

Table 1. IUPAC codes for describing more conserved transcription factor binding consensus 
sequences (Pavesi et al., 2004). 

Another way to represent more conserved motifs is via regular expression, or regex, a 
complex but highly flexible language for describing text patterns in the computer field 
(Mrazek, 2009). One simple regular expression that describes the four OmpR-binding sites 
upstream of ompF is: [TG]T[AT][AT]C[TG][TG][AT][ATG][TG][GA][ATG][ATC]AC 
[ATC][AT][AT][ATGC][ATC] 
Each pair of brackets specifies one nucleotide and the bases in the brackets specify the 
allowable nucleotides. There are slightly different flavors of the regex language that 
implement slightly different features, so be sure to check the documentation accompanying 
a pattern matching program to find out the features supported. 
Note that both IUPAC codes and regular expression allow multiple bases to be specified at a 
nucleotide position, but all the valid bases are assumed to occur with the same frequency. 
Because the set of DNA sequences recognized by a TF is often degenerate and nucleotide 
frequency information is helpful in pattern matching, matrices are more often used and are 
supported by many programs. 
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Fig. 1. The first four rows, labeled F1-F4, contain the four sites upstream of the ompF gene 
where OmpR binds in Escherichia coli. (a) The position frequency matrix representation of 
the same ompF sequences. Each column contains the frequencies of occurrence of the 
nucleotides in each corresponding F1-F4 sequence position. (b) The position weight matrix 
representation of the ompF F1-F4 sequences. The weight matrix is derived from the 
frequency matrix in (a). The values are calculated by taking the log of the frequency values 
divided by background model values. It is this position weight matrix that is actually used 
by pattern matching programs during execution. (c) The consensus motif of the four F1-F4 
sequences in IUPAC codes. 

3. How pattern matching programs work 

Whether a motif is given as a regular expression, an IUPAC consensus sequence, or a 
matrix, a pattern matching program looks for the motif by scanning a genome on both the 
sense and antisense strands from the 5’ to 3’ end (MacIsaac & Fraenkel, 2006). See Fig. 2. 
Typically, the default is to check only the intergenic regions; coding regions are skipped 
over. A window with a width equal to the length of the motif slides over the genome one 
base at a time. At each iteration, the sequence in the window is checked against the given 
motif for a match. 
For regular expression or IUPAC motif, each nucleotide in the window is checked to see if 
that nucleotide is allowed at that position. If the number of mismatches is at or below a 
certain limit, the sequence is considered a match and returned. If the motif is given as a 
matrix, the sequence is scored against the matrix. The score for that sequence is calculated 
by summing the weight score at each position. If the score is at or above a certain threshold, 
that sequence is considered similar to the motif and a match is found. The score measures 
how closely the candidate sequence matches the motif modeled by the position weight 
matrix and how likely the candidate happens to be a random genomic background 
sequence. 

4. Motif databases and utilities 

To use motif matching programs to discover candidate genes modulated by a TF, the TF’s 
motif is required. One can look in the literature to compile a list of the reported binding site 
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sequences, or better yet, one can search online databases of sequenced genomes and gene 
regulation information, usually curated from primary journals. There are general databases 
covering the prokaryotes and specialized ones for particular bacterial strains (see Table 2). 
For instance, PRODORIC contains close to 3,000 TFBSs and over 2,000 genes for multiple 
bacteria species (Grote et al., 2009). Another resource containing information on 
transcription factors and their target genes, but for Escherichia coli K-12 only, is RegulonDB 
(Gama-Castro et al., 2011). 
 

 
Fig. 2. Overview of how pattern matching programs work given a motif represented using 
(a) IUPAC codes or (b) a position weight matrix. These programs slide an n-bp window 
(shaded and underlined), where n is the length of the motif (n = 20 in this example), over 
every single base in the genome. For each iteration, the sequence inside the window is (a) 
compared against the allowable nucleotides specified by the IUPAC motif, and if the 
number of mismatches is at or below a certain limit, the sequence is considered a match. For 
the matrix in (b), the score of an individual base in each column is looked up and summed, 
and if the total is at or over a certain threshold, the sequence is considered a match. The 
IUPAC consensus motif and the matrix are the same as those in Fig. 1(c) and (b). In (a), Y = a 
match, N = mismatch. 
 

Database Organism Web Address Reference 
DBTBS Bacillus subtilis http://dbtbs.hgc.jp Sierro et al., 2008 

DPInteract Escherichia coli http://arep.med.harvard.edu/dpint
eract Robison et al., 1998 

RegulonDB Escherichia coli http://regulondb.ccg.unam.mx Gama-Castro et al., 
2011 

CoryneRegNet Corynebacterium http://www.CoryneRegNet.de Baumbach, 2007 
PRODORIC Prokaryotes http://www.prodoric.de Grote et al., 2009 

RegPrecise Prokaryotes http://regprecise.lbl.gov/RegPrecis
e 

Novichkov et al., 
2010a 

RegTransBase Prokaryotes http://regtransbase.lbl.gov Kazakov et al., 2007 
KEGG Prokaryotes http://www.genome.ad.jp/kegg Kanehisa et al., 2004 

Table 2. Select databases of curated and annotated transcription factor binding sites and 
other gene expression regulation information in prokaryotes. Note that the KEGG database 
also covers eukaryotes. 

Once a set of binding site sequences has been gathered, online tools are available to analyze 
and display the motif in those sequences (Table 3). D-MATRIX (Sen et al., 2009) is a web 
application that constructs alignment, frequency, and weight matrices and displays them. 
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The generated matrices can be exported for use as input into pattern matching programs. 
The site can also generate the regular expression and IUPAC representations of the 
consensus motif. WebLogo displays a motif graphically so that sequence similarity can 
easily be visualized (Crooks et al., 2004). 
It is important that the gathered TF binding sites are high quality since inaccuracies will 
produce a subpar matrix and consequently, poor motif matching performance (Medina-
Rivera et al., 2010; Wittkop et al., 2010). Inaccuracies in TFBS information could stem from 
the imprecise nature of experimental approaches since gel shift, DNase footprinting, ChIP- 
chip, and ChIP-seq do not precisely identify binding sequences (Wittkop et al., 2010). 
Two programs aim to analyze and optimize binding sequences. The utility ‘matrix-quality’ 
quantifies the ability of a matrix to distinguish background sequences and find functional 
binding sites in a genome (Medina-Rivera et al., 2010). It works by combining theoretical 
and empirical score distributions (Medina-Rivera et al., 2010). Another utility, MoRAine, 
goes one step further by shifting nucleotides around and takes the reverse complement of 
each TFBS sequence to try to improve the matrix (Wittkop et al., 2010) . 
 

Program Platform Web Address Reference 
D-MATRIX Web http://203.190.147.116/dmatrix Sen et al., 2009 

matrix-quality Web; 
Unix http://rsat.ulb.ac.be/rsat Medina-Rivera 

et al., 2010 

MoRAine Web; 
Java http://moraine.cebitec.uni-bielefeld.de Wittkop et al., 

2010 

WebLogo Web; 
Unix http://weblogo.berkeley.edu Crooks et al., 

2004 

Table 3. Utility programs to manipulate transcription factor binding site sequences: 
construct and display frequency and weight matrices, generate regular expressions and 
IUPAC consensus patterns, and check and improve alignment quality. All the programs run 
inside a web browser (Platform = Web). Some of them can also be downloaded and 
executed locally on the user’s computer running Unix or Unix-like operating system 
(Platform = Unix) or locally inside a Java virtual machine (Platform = Java).  The Web 
Address column shows where the programs can be located or downloaded. 

5. Pattern matching programs 

Once a list of high quality TF binding sites is in hand, it can be fed into the pattern matching 
programs listed in Table 4 to find novel binding sites. All the listed programs are designed 
for prokaryotes or they have been tested with bacteria. This section briefly describes each 
motif matching program. 
STAMP (Mahony & Benos, 2007) is not a true pattern matching program in that it does not 
scan genomes. Instead, it finds regulatory sequences deposited in motif databases that are 
most similar to a user-supplied set of binding sequences. It also performs multiple 
alignments on the supplied binding motifs and builds trees of the evolution of TF binding 
motifs. 
MAST (Motif Alignment & Search Tool) (Bailey & Gribskov, 1998), a component of the 
MEME Suite, is one of the early programs that perform pattern matching on nucleotide (and 
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protein) sequences. The user can select one of the available genomes or upload a file 
containing up to one million nucleotides to search. The program requires an input file 
describing the matrix of the motif to search for. 
 

Program Platform Web Address Reference 

CRoSSeD Web http://ibiza.biw.kuleuven.be/crossed/we
btool.html Meysman et al., 2011 

EMBOSS > 
dreg Web; Unix http://emboss.sourceforge.net Rice et al., 2000 

dscan Web http://bayesweb.wadsworth.org/cgi-
bin/dscan.pl Thompson et al., 2005 

FITBAR Web http://archaea.u-psud.fr/fitbar Oberto, 2010 
iMotifs Mac http://wiki.github.com/mz2/imotifs Piipari et al., 2010 

MAST Web; Unix http://meme.sdsc.edu/meme/mast-
intro.html 

Bailey & Gribskov, 
1998 

Motif 
Locator Web http://www.cmbl.uga.edu/software.html Mrazek et al., 2008 

MyPattern
Finder Web http://www.nii.ac.in/~deepak/RegAnalyst Sharma et al., 2009 

PatScan Unix http://ftp.mcs.anl.gov/pub/Genomics/Pa
tScan Dsouza et al., 1997 

Pattern 
Locator Web; Unix http://www.cmbl.uga.edu/software.html Mrazek & Xie, 2006 

PhyloScan Web http://bayesweb.wadsworth.org/phyloscan Palumbo & Newberg, 
2010 

PredictReg
ulon Web http://www.cdfd.org.in/predictregulon Yellaboina et al., 2004 

RegPredict Web http://regpredict.lbl.gov Novichkov et al., 
2010b 

RSAT Web http://rsat.ulb.ac.be/rsat Thomas-Chollier et 
al., 2008 

SITECON Web http://wwwmgs.bionet.nsc.ru/mgs/progr
ams/sitecon 

Oshchepkov et al., 
2004 

STAMP Web http://www.benoslab.pitt.edu/stamp Mahony & Benos, 
2007 

Virtual 
Footprint Web http://www.prodoric.de/vfp Munch et al., 2005 

Table 4. Programs that can scan prokaryote genomes for transcription factor binding sites. 
All these programs can run over the web inside a browser (Platform = Web) except iMotifs, 
a MacOS X only application, and PatScan, a program that must be downloaded and run 
locally on Unix or Unix-like systems. Three of the web applications—dreg, MAST, and 
Pattern Locator—can also be downloaded and execute on Unix or Unix-like systems. The 
Web Address column shows where a program can be run or downloaded. 

PatScan (Dsouza et al., 1997) is another early motif matching program. Even though it is 
designed to search protein sequences for motifs and nucleotide sequences for hairpins, 
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pseudoknots, repeats, and other secondary structures, it could be used to search genomic 
DNA for TFBSs. Mismatches, insertions, and deletions are allowed. It runs on Unix systems 
only. A web version seems to be no longer available. 
The program ‘dreg’ searches one or more sequences for a given motif described by a regular 
expression (Rice et al., 2000). It is one of the hundreds of tools comprising EMBOSS 
(European Molecular Biology Open Software Suite). EMBOSS’ mission is to provide a place 
to bring together the rapid increase in the number of complete genomes and new sequence 
analysis software and make them publicly available as a suite. The tools perform sequence 
alignment, database searching with sequence patterns, nucleotide sequence patterns (CpG 
islands, repeats, etc.), and more.  
To address the usability issue associated with PatScan and dreg, Pattern Locator was created 
(Mrazek & Xie, 2006). Its purpose is to find short sequence patterns in complete genomes. 
The input string uses a special syntax or it can be specified using the IUPAC alphabet.  The 
flexible syntax allows the following to be specified: direct and inverted repeats, maximum 
number of mismatches allowed, direct or complementary DNA strand to search, and gaps. 
Many other programs do not require motifs to be supplied in a special syntax. Motif Locator 
(Mrazek et al., 2008) takes a set of binding sequences, turns it into a matrix, and uses the 
matrix to search a genome for instances of the motif. MyPatternFinder (Sharma et al., 2009) 
finds exact or approximate occurrences of a motif from a selection of over 600 complete 
genomes using an exact search method and an alignment technique. Insertions and 
deletions are allowed. The program ‘dscan’ (Thompson et al., 2005) scans genome databases 
for statistically significant sites similar to the given motif. Two databases of E. coli and 
Rhodopseudomonas palustris intergenic regions are provided. 
PredictRegulon (Yellaboina et al., 2004) is a web application that scans a prokaryote genome 
for potential target genes of a TF. The user picks a bacterial genome from a list of over 110 
and supplies a set of aligned binding site sequences for the transcription factor. The 
program then scans the upstream sequences of all the genes in the selected genome, 
calculates a score for a potential binding site in each promoter, and outputs the site if the 
score is above the threshold cutoff value, which is taken to be the lowest score in the input 
sequence set. The output includes the binding site sequence, the name and description of the 
gene, and operon context and detailed information on the gene. 
FITBAR (Fast Investigation Tool for Bacterial and Archaeal Regulons) (Oberto, 2010) is a 
matrix search program that scans whole Bacteria and Archaea genomes retrieved from the 
National Center for Biotechnology Information repository to discover sets of genes 
regulated by TFs. Unlike most other genome matching programs such as PredictRegulon, 
FITBAR does not find matches by arbitrary score cutoff values. It uses the log-odds and 
entropy-weighted search algorithms and Compound Importance Sampling (CIS) and Local 
Markov Method (LMM) to calculate the statistical significance of the predicted motifs (p-
values). Aligned TFBS sequences can be supplied, or one of the 200 known prokaryotic 
matrices can be selected. Results are listed, along with a graphical depiction of the motif 
sequence location and the surrounding genes. 
Like EMBOSS, RSAT (Regulatory Sequence Analysis Tools) (Thomas-Chollier et al., 2008) 
contains a collection of tools to analyze cis-acting regulatory elements in the noncoding 
sequences from over 600 genomes. The tools perform both pattern matching (and pattern 
discovery) and return information on individual genes, such as orthologs and DNA 
sequences. Namely, the five pattern matching programs—dna-pattern, genome-scale-dna-
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pattern, matrix-scan, patser, and genome-scale-patser—allow one to search entire genomes or a 
set of sequences for occurrences of a motif represented as a regular expression, an IUPAC 
string, or a position weight matrix. Various statistical background models are available to 
allow the significance of the matches to be evaluated. 
Virtual Footprint (Munch et al., 2005) is an online interactive environment to search and 
analyze TFBS, gapped or ungapped, in bacterial genomes. The TFBS pattern to search can be 
picked from a list of pre-defined matrix motifs, or a set of sequences, a regular expression, or 
IUPAC codes can be supplied. A match is assigned to a gene if possible and the genomic 
context is provided. The program can check if a match also occurs in the regulatory region 
of orthologous genes. 
Like Virtual Footprint, iMotifs (Piipari et al., 2010) provides an integrated environment to 
visualize, analyze, and annotate sequence motifs. However, it does not run over the web. It 
is a Java-based application that runs on MacOS X only. 
More advanced pattern matching programs incorporate the use of cross-species 
conservations during their genome search to enrich the predicted sites. Comparative 
genomics approach is predicated on the idea that TFs from related organisms regulate genes 
that tend to be conserved (Novichkov et al., 2010b). Presence of similar TFBSs upstream of 
orthologous genes increases the probability that the sites are functional binding sites 
(Novichkov et al., 2010b). 
PhyloScan (Carmack et al., 2007; Palumbo & Newberg, 2010) is a web program that screens 
candidate sequences by using (1) aligned or unaligned sequence data from multiple species, 
even evolutionarily distant ones, (2) multiple sites within an intergenic region, and (3) q-
values to predict more functional TFBSs, even weak ones, in a genome. The use of q-values 
is in contrast to conventional motif matching programs, which either score a candidate 
binding site against a training set of TFBS or evaluate the statistical significance of the 
candidate binding site using p-value. 
Another program that takes the comparative genomics approach is RegPredict (Novichkov 
et al., 2010b), a web site that provides a visual environment for the discovery of genes 
regulated by a TF in prokaryotes. The site contains a large collection of known TFBS motifs 
gathered from the RegPrecise, RegTransBase, and RegulonDB databases and genomic 
sequences of major taxonomic groups of Bacteria. Any of the motifs can be selected, or the 
user can upload a set of aligned binding site sequences, and RegPredict will scan for the 
motif in up to 15 genomes simultaneously. (If the regulatory motif is not known, RegPredict 
can predict one de novo from user-supplied coregulated genes.) Candidate genes are 
grouped into different clusters based on the degree of conservation of regulatory 
interactions and then presented in a multi-pane user interface, along with the genomic 
context and gene function information, for the user to analyze. 
Other advanced motif matching programs use DNA structure information to increase their 
performance. A factor that contributes to the specificity of the interaction between a TF and 
its binding site is the local conformation of the DNA site (Oshchepkov et al., 2004). Even 
though a TF often regulates multiple genes and the binding sites in the promoters of these 
genes show variations, certain conformational and physicochemical properties are 
conserved among these sites so that the TF can recognize the sites (Oshchepkov et al., 2004). 
Thus, these context-dependent TFBS properties can be used to improve the predictions of 
genes controlled by a TF (Oshchepkov et al., 2004). 
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SITECON (Oshchepkov et al., 2004) is a web application that can analyze and report 38 
properties—major groove depth, bend, entropy change, to name a few—in a given set of 
DNA binding site sequences, and optionally, find binding sites in one or more DNA 
sequences using those properties. 
CRoSSeD (Conditional Random fields of Smoothed Structural Data) (Meysman et al., 2011) 
is another program that leverages structure information. Specifically, it uses 12 structural 
scales, such as protein-induced deformability and stabilization energy, that are presumably 
relevant to binding site recognition in prokaryotes. (Scales are experimentally determined 
models for approximating regional DNA structure based on di- or trinucleotides.) Some of 
the novel binding sites found by CRoSSeD had low sequence similarity. A check with the 
literature and database indicated that they may be true binding sites. This shows that 
searching for binding sites based on structure information is a viable approach since these 
binding sites, with their weak motif, may be missed by traditional pattern matching 
programs. 

6. EnvZ/OmpR regulon prediction 

Our lab is currently using genetic, biochemical, and bioinformatics approaches to determine 
the set of genes regulated by OmpR in E. coli. A microarray experiment showed that the 
expression levels of 125 genes were significantly affected in an EnvZ-null background 
(Oshima et al., 2002). To help identify the genes that are directly modulated by OmpR, we 
searched the RegulonDB databank and found 23 OmpR binding sites for 11 genes, as listed 
in Table 5. 
Using all of the OmpR binding sequences except ecnB’s (since it is not 20-bp long) as input, 
the pattern matching program Motif Locator detected 12,314 matches in the intergenic 
regions of the E. coli K12 genome. Since E. coli has over 4,200 genes (Blattner et al., 1997), the 
results clearly contained many false positives. 
 

Gene OmpR Binding Site Gene OmpR Binding Site 
bolA AACCTAAATATTTGTTGTTA micF CGAATATGATACTAAAACTT 
nmpC AACTTACATCTTGAAATAAT micF TTAAGATGTTTCATTTATCG 
ompF TTTACTTTTGGTTACATATT micF TATAGATGTTTCAAAATGTA 
ompF TTTTCTTTTTGAAACCAAAT ompC TTTACATTTTGAAACATCTA 
ompF CTTTATCTTTGTAGCACTTT ompC AGCGATAAATGAAACATCTT 
ompF GTTACGGAATATTACATTGC ompC AAAAGTTTTAGTATCATATT 
csgD TACATTTAGTTACATGTTTA fadL GAGCCAGAAAACCCTGTTTA 
tppB GTAACAGATTATTACAAAGG fadL TTAGATCATATTTGAAAAAA 
flhD AAAAATCTTAGATAAGTGTA fadL ACGTAACATAGTTTGTATAA 
flhD GGGCATTATCTGAACATAAA fadL AAATCACACTTAAAAATGAT 
omrA CACACCTCGTTGCATTTCCC ecnB AACATAAATAACAT 
omrB AACCTTTGGTTACACTTTGC   
Table 5. List of known OmpR binding sites and the corresponding genes. The list was 
compiled using RegulonDB. 

To increase the specificity and reduce the number of matches returned, we picked 10 
binding sites from five genes: ompF, ompC, tppB, csgD, and fadL. See Table 6. These sequences 
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were chosen because each contains two direct repeats of the consensus motif 
GTTACANNNN, which is derived from extensive studies on interactions between OmpR 
and ompF and ompC promoters (Harlocker et al., 1995; Yoshida et al., 2006). Note that we 
adjusted the alignment of the csgD and fadL binding sequences to better fit the consensus 
model. The csgD and fadL sequences from RegulonDB shown in Table 5 span from –57 to –38 
and from +58 to +77 relative to the transcriptional start site, whereas the adjusted ones span 
from -59 to -40 and from 50 to 69, respectively. 
Pattern matching analysis of the 10 sequences listed in Table 6 using Motif Locator found 
110 matches, five of which were among the 125 genes affected in the microarray experiment: 
ompF, flgL, ompC, rpoE, and cysC. The same set of 10 sequences was fed into another pattern 
matching program, Virtual Footprint, which predicted 32 genes modulated by OmpR. Four 
genes were the same as those identified in the microarray data: ompF, ydgR, ompC, and ygjU. 
Only two genes were found by both Motif Locator and Virtual Footprint, ompF and ompC, 
showing that different programs return different results. 
 

Gene OmpR Binding Site 
ompF TTTACTTTTGGTTACATATT 
ompF TTTTCTTTTTGAAACCAAAT
ompF CTTTATCTTTGTAGCACTTT 
ompF GTTACGGAATATTACATTGC
ompC TTTACATTTTGAAACATCTA
ompC AGCGATAAATGAAACATCTT
ompC AAAAGTTTTAGTATCATATT
tppB GTAACAGATTATTACAAAGG
csgD GTTACATTTAGTTACATGTT
fadL GTTACAGCACGTAACATAGT

Table 6. OmpR binding sequences that contain direct repeats of the GTTACANNNN 
consensus motif, where N denotes any nucleotide. 

The degenerate OmpR binding motif makes identification of new regulon member difficult. 
When the set of 10 sequences in Table 6 was used as input, Motif Locator predicted only half 
of the 12 known OmpR regulated genes: bolA, ompF, csgD, micF, ompC, and fadL, whereas 
Virtual Footprint returned four: ompF, micF, ompC, and fadL. This observation suggests that 
the run was too specific and more novel genes remain to be discovered. To find them, one 
can try different sets of input sequences, run other pattern matching programs, or make use 
of comparative genomics or published OmpR crystal structures (Kondo et al., 1997; 
Martínez-Hackert & Stock, 1997). 

7. Conclusion 

Like our own experience of using bioinformatics tools to study the OmpR regulon 
illustrates, comparative studies on the performance of motif discovery and matching 
programs found no single program works well on all data sets (MacIsaac & Fraenkel, 2006). 
In particular, a benchmark of four motif matching programs—RSA Tools, PRODORIC 
Virtual Footprint, RegPredict, and FITBAR—for their ability to discover potential binding 
sites for the transcriptional regulator NagC involved in N-acetylglucosamine metabolism in 
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the Escherichia coli K12 MG1655 genome found that some tools uncover sites that others have 
missed (Oberto, 2010). Therefore, it is recommended that multiple tools be used instead of 
just one and the output from multiple programs be combined and compared in order to 
improve accuracy and gain confidence in the results (Das & Dai, 2007; Mrazek, 2009). 
The easiest way to run the pattern matching programs—and other bioinformatics tools—is 
over the web inside a browser. However, in order to help keep the load on the web servers 
hosting these programs to a low level, some sites put a limit on the complexity of the jobs 
submitted. If a web site places such restriction, a desktop version of the program is usually 
provided for users to download and install or compile on their local computer. Many of the 
desktop programs run in a Java environment or on Unix or Unix-like system, such as Linux. 
Some Unix programs can run on Windows if the Linux-like environment Cygwin is set up 
first. However, it should be noted that setting up the required runtime environment and 
installing or compiling these programs take considerable effort and computer expertise. 
Also be aware that some desktop programs, especially those that run on Unix, are run from 
the command line; there is no graphical user interface. 
The identification of a TF’s binding motif and the identification of new target genes are 
difficult to do experimentally and computationally (Pavesi et al., 2004) because we do not 
completely understand the biology of gene regulation (Das & Dai, 2007). But it is hoped that 
the information in this chapter will make the task of pattern matching easier for 
microbiologists and other researchers. 
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1. Introduction 

DNA contains the coding information for the entire set of proteins produced by an 
organism. The specific combination of proteins synthesized varies with developmental, 
metabolic and environmental circumstances. This variation is generated by regulatory 
mechanisms that direct the production of messenger ribonucleic acid (mRNA) and 
subsequent translation of the nucleotide sequence into amino acid sequences, among other 
fundamental processes including post-translational modifications. A major step of gene 
expression regulation is the control of transcription initiation by RNA polymerase II. 
Control systems that modulate mRNA synthesis are based on the specific recognition and 
interaction of proteins with cognate sites on the DNA. The complex network of DNA-
protein and protein-protein interactions determines the degree of transcription of a specific 
sequence and defines particular expression patterns. Ultimately, the outcome of this net of 
interactions provides the finely-tuned response to internal clues and environmental signals 
(Matthews, 1992). 
Understanding gene expression in complex organisms such as eukaryotes is one of the most 
important challenges of molecular biology. One of the most fundamental and unanswered 
questions is whether adaptative evolution proceeds through changes in protein-coding 
DNA sequences or through non-coding regulatory sequences. It has been argued that 
morphological change occurs mainly via non-coding changes (Haygood et al., 2010). Diptera 
studies showed that cis-regulatory sequences that control transcription are a common source 
of divergent protein expression patterns and thus of phenotypic change (Wittkopp, 2006). 
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Also, recent analyses of the human genome suggest a distinctive role for adaptative changes 
both in coding and non-coding sequences. Changes in non-coding sequences appear 
primarily related to changes in neural development (Haygood et al., 2010).  
The last decade has witnessed an explosion of studies showing that the complex regulation 
of gene expression is mainly modulated by the manifold interactions between transcription 
factors (TFs) with their corresponding transcription factors binding sites (TFBSs) on DNA 
(Wei & Yu, 2007). These regulatory elements are either located proximally, in sequences 
upstream of the transcription start site, which are generically known as promoters, or more 
distantly, in sequences known as enhancers or silencers. Cis-regulatory elements are 
information processing units that are embedded in genomic DNA and which regulate gene 
expression. Most commonly, these cis-regulatory elements or modules are a few dozens to 
several hundred base pairs long and are comprised of multiple binding sites for 
transcription factors. On average, a module will have binding sites for different 
transcription factors and for some factors, more than one site may be present (Howard & 
Davidson, 2004). To date, cis-regulatory modules of some Drosophila genes have been 
characterized at the target site level, providing an explanation of how these sequences and 
gene network architectures control development in early dipteran embryos (Howard & 
Davidson, 2004). Modules have also been denominated “motifs” by many authors, and this 
is the nomenclature we will use throughout this work. Knowledge of the cis-regulatory 
elements or motifs of many genes from different species may offer insight into how these 
sequences control the building of the diverse structures and functional adaptations found in 
living organisms. 
As is well known, transcription involves the binding of proteins to several sites on a 
promoter sequence, and in eukaryotes the action of transcription factors over long distances 
seems to be the rule. Transcriptional outcome can be influenced by cooperative interactions 
of proteins between adjacent or distant sites, mainly through the formation of DNA loops, 
as has been described profusely in both prokaryotic and eukaryotic organisms (Han et al., 
2009; Matthews, 1992; Schleif, 1992). The property of DNA to form loops enhances the 
regulatory properties of proteins and expands the flexibility of systems in responding to 
signals that evoke cellular change. 
In order to understand the functional organization of a eukaryotic promoter, in this study 
we used the well-studied ligninolytic fungal species Phanerochaete chrysosporium, and 
examined the promoters from a selected gene family. P. chrysosporium has been used as a 
model system in numerous studies for its production of lignin-degrading enzymes (Singh & 
Chen, 2008). Cellulose and lignin constitute the most abundant forms of organic carbon and 
their degradation and mineralization is a fundamental step in the carbon cycle of the 
biosphere. The use of lignocellulosic biomass depends on either the removal or disruption of 
lignin by a process that can include the activity of lignin- and manganese-dependent 
peroxidases in order to expose the cellulose polymer to the attack of cellulolytic enzymes. 
Therefore, an understanding of the regulatory mechanisms that underlie the production of 
these enzymes is of pivotal importance both for a deeper comprehension of the crucial 
process of maintenance of the carbon cycle in nature and for the production of bioenergy. 
Additionally, lignocellulosic wastes are produced in large amounts and efforts have been 
made to convert these residues into valuable products such as biofuels, chemicals and 
animal feed (Dashtban et al., 2009). This bioconversion usually requires a multistep process 
involving a pretreatment (mechanical, chemical or biological) and hydrolysis to produce 
readily metabolyzable molecules such as hexoses and pentoses (Sánchez, 2009). 
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Pretreatment of lignocellulosic residues is necessary because hydrolysis of non-pretreated 
material is slow and results in low yield (Dashtban et al., 2009). It has been reported that the 
use of P. chrysosporium is advantageous for pretreatment of cotton stalks in an energy-
saving, low cost and environmentally friendly approach that can reduce chemical 
pretreatments (Shi et al., 2009). Reported recovery depended on culture conditions, either 
agitated or shallow stationary submerged. Although agitated cultivation resulted in better 
delignification, pretreatment under submerged shallow stationary conditions provides a 
better balance between lignin degradation and carbohydrate availability (Shi et al., 2009). 
Interestingly, under solid-state cultivation, higher cellulolytic but not ligninase activity was 
associated with Mn2+ addition, although the initial purpose of supplementing Mn2+ was to 
improve ligninase activities and lignin degradation (Shi et al., 2008). This fungus has also 
shown promising results in wood biopulping (Singh et al., 2010) and soil bioremediation 
(Jiang et al., 2006). Hence, optimization of these biotechnological processes can also profit 
from a deeper understanding of the fundamental process of gene transcription. 
Woodrotting fungi include white-rot basidiomycetes, brown-rot basidiomycetes, and soft-
rot ascomycetes/deuteromycetes; however, only a small group of these are able to 
completely degrade lignin to carbon dioxide and thereby gain access to the carbohydrate 
polymers of plant cell walls, which they use as carbon and energy sources. Selective 
degradation of lignin by these fungi leaves behind crystalline cellulose with a bleached 
appearance that is often referred to as "white rot" (Martínez et al., 2004). Some or all of these 
enzymes and their isozymes of the lignin depolymerization system include multiple 
isozymes of lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) (Kirk & 
Farrell, 1987; Farrell et al., 1989; Singh & Chen, 2008). Among the ligninolytic fungi, P. 
chrysosporium is considered as a model organism for the development and understanding of 
the ligninolytic-enzyme-production system, as it can produce a more complete ligninolytic 
enzyme complex than most other species (Kirk & Farrell, 1987) and until recently, it was the 
only ligninolytic fungus whose genome has been sequenced (Martínez et al., 2004). In P. 
chrysosporium, LiPs together with MnPs and H2O2-producing enzymes constitute the major 
components of the lignin-degrading system that are secreted to the extracellular medium 
(Kirk & Farrell, 1987; Farrell et al., 1989; Kirk et al., 1990).  
The characterization of ligninolytic enzyme systems of several basidiomycetes has revealed 
that in some species LiP activity is not observed. For example, in the white rot fungus 
Phanerochaete sordida only MnP activity, but no lignin peroxidase or laccase activity was 
detected, although several culture conditions were assayed. In this species, three highly 
similar MnP isoenzymes were identified (Rüttimann-Johnson et al., 1994). The white-rot 
basidiomycete Ceriporiopsis subvermispora produces two families of ligninolytic enzymes, 
MnPs and laccases (Lobos et al., 1994), but lignin peroxidase activity is not detected 
(Rajakumar et al., 1996). In Ganoderma lucidum low levels of MnP activity are detected in 
some culture media, but not in others and no LiP activity was seen in any of the media 
tested (D’Souza et al., 1999). 
The genome of P. chrysosporium contains a large group of genes coding for low–redox 
peroxidases (LRP), including 10 lip genes, 5 genes coding for MnPs, 4 genes encoding 
multicopper copper oxidases (related to laccases) and an interesting peroxidase gene 
unlinked to all peroxidases, that shares residues common to both MnPs and LiPs (Martínez 
et al., 2004). Other white rot fungi, such as C. subvermispora (Rajakumar et al., 1996) and G. 
lucidum (D’Souza et al., 1999) also contain lip-like genes, but as described above, do not 
exhibit detectable LiP activity. 
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The recent genome sequencing of a second basidiomycete, the brown-rot fungus Postia 
placenta, yielded exciting novelties: genes encoding the class II secretory peroxidases LiP, 
MnP and versatile peroxidase were not detected in the P. placenta genome (Martínez et al., 
2009). This fungus contains only one LRP gene that is not closely related to LiP and MnP, 
but is part of an assemblage of ‘‘basal peroxidases’’ that includes the novel peroxidase (NoP) 
of P. chrysosporium (Martínez et al., 2009). Comparison of the P. placenta and P. chrysosporium 
genomes indicates that the derivation of brown-rot is characterized largely by the 
contraction or loss of multiple gene families that are thought to be important in typical 
white-rot, such as cellulases, LiPs, MnPs, copper radical oxidases, among other enzymes. 
Phylogenetic analysis suggests that LiP and MnP gene lineages of P. chrysosporium were 
independently derived from the basal peroxidases before the divergence of Postia and 
Phanerochaete. If so, then the absence of LiP and MnP in P. placenta may reflect instances of 
gene loss (Martínez et al., 2009). This general pattern of simplification is consistent with the 
view that brown-rot fungi, having evolved novel mechanisms for initiating cellulose 
depolymerization, have cast off much of the energetically costly lignocellulose-degrading 
apparatus that is retained in white-rot fungi, such as P. chrysosporium (Martínez et al., 2009).  
LiPs from P. chrysosporium are encoded by ten structurally related genes (Stewart & Cullen, 
1999). The genomic organization of the lip genes that encode these isoenzymes is known: 
four genes (lipA, lipB, lipC and lipE) reside within a 35 Kb region and the remaining genes 
(lipG, lipH, lipI and lipJ) lie within a 15 Kb region, forming clusters where six genes occur in 
pairs that are transcriptionally convergent (Stewart & Cullen, 1999). The transcriptional 
orientation and intergenic distances indicate that regulatory promoter sequences are not 
shared among any of the lip genes. Lip genes have been classified by their deduced amino 
acid sequences and also by their intron/exon structure (Stewart & Cullen, 1999). The 
phylogenetic clustering defines a major subfamily I of six genes (lipA, lipB, lipE, lipG, lipH 
and lipI) and four minor subfamilies of only one member each (lipC, lipD, lipF and lipJ) 
(Stewart & Cullen, 1999).  
Although the lip genes are structurally related and the proteins participate in a common 
physiological process, lip promoter sequences display no obvious similarities, suggesting 
differential gene expression of this family of isozymes. Indeed, the relative transcriptional 
activity of these genes has been assessed systematically, showing differential regulation in 
response to carbon (C)-limited or nitrogen (N)-limited culture media (Stewart & Cullen, 
1999). Recently, it was shown that over a hundred proteins that are secreted by P. 
chrysosporium exhibited increased transcription in either C- or N-limited relative to nutrient 
replete medium, including LiP and MnP expression (Wymelenberg et al., 2009). In another 
study, similar expression patterns of secreted proteins between cellulose-grown and wood-
grown cultures were found (Sato et al., 2007), but this study showed the complication of 
considering wood as a nutrient, since it is both N-limited and C-replete. In addition to 
enzymes which act on lignocelluloses, proteases were found, suggesting the ability to 
generate nitrogen (Sato et al., 2007); depletion of nitrogen triggers the onset of secondary 
metabolism. Metabolic switching occurs in culture after 48 hours when linear growth ceases. 
After 72 hours, P. chrysosporium has shifted to secondary metabolism, its beginning being 
closely related to the appearance of LiP activity (Wu & Zhang, 2010). The complex 
expression pattern of lip genes suggests that each isozyme might play a specific biological 
role in the process of ligninolysis, though why there is a multiplicity of lignin peroxidases 
remains unclear (Farrell et al., 1989; Stewart & Cullen, 1999; Sato et al., 2007). This long 
standing question is especially intriguing and paradoxical, since LiPs are low–redox 
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enzymes that catalyze a unique nonspecific enzymatic “combustion”, i.e. susceptible 
aromatic substrate molecules are oxidized by one electron and this produces unstable cation 
radicals which then undergo a variety of nonenzymatic reactions (Kirk & Farrell, 1987). The 
answer to this fundamental issue is still a matter of debate and it is speculated that an array 
of different genes may provide the necessary plasticity to the fungus to attack diverse types 
of lignin, its recalcitrant carbon and energy source, under various biotic and abiotic 
conditions. 
The isoenzyme family of LiP proteins from P. chrysosporium provides an interesting model 
for analyzing the evolution of promoters and their coding sequences. The identification of 
characteristic features regulating the main genes involved in lignin biodegradation, as well 
as others that are co-regulated, can both provide a more complete understanding of 
promoter organization and be used to identify novel genes involved in ligninolysis through 
bioinformatics–based searches. In this study, both bioinformatic tools and experimental data 
were used to explore if the structure of promoter organization is related to the phylogenetic 
grouping of the LiP proteins. A motif is a pattern common to a set of nucleic acid 
subsequences which share some biological property of interest, such as being a DNA binding 
site for a regulatory protein. It was expected that these motifs would provide information 
about the regulatory factors that control gene expression and identify transcription factors 
that bind to the motifs.  The main goal was to analyze the structural organization of the 
promoters of the lip gene family and determine if there exists an organization of TFBSs 
and/or some kind of structured assembly of cis-regulatory elements or motifs within their 
promoter sequences. The promoter structures were compared with reported data on the 
differential regulation, transcription and phylogenetic analysis of the LiP proteins. To our 
knowledge, no reports exist where bioinformatic data has been correlated with the 
expression of a family of isoenzymes in filamentous fungi. The working hypothesis of this 
study was to establish if genes involved in the same biological process have promoters that 
share structural characteristics, although these common structural elements may not be 
evident. In this case, it should be possible detect a common architecture using appropriate 
bioinformatics tools in order to identify motif patterns that contain functional TFBSs. 

2. Method and results 

2.1 Analysis of promoters from lignin peroxidase genes 
2.1.1 Alignment of promoter sequences reveals a similar pattern to lip gene clustering  
We first analyzed 1 Kb of the available promoter sequences of the ten lip genes using the 
ClustalW (Thompson et al., 1994) and the Jotun Hein algorithms (Hein, 1990) from the 
DNAStar software (Figure 1). Due to lack of information about the transcriptional start sites 
of the lip genes from P. chrysosporium, we first analyzed 1 Kb of the available region located 
upstream of the translational start site, since it was highly probable that promoter sequences 
were included. We tested two alignment algorithms: one was the Needleman-Wunsch 
algorithm present in ClustalW, which does not presume an evolutionary relationship 
between the analyzed sequences. The second was the Jotun Hein algorithm, a Markov chain 
algorithm that presumes an evolutionary relationship between the sequences to be 
analyzed. ClustalW was performed using BLOSUM62 matrix. The algorithms were used 
through the PC interphase provided by the DNASTART software. When using the Jotun 
Hein algorithm, a clustering of the promoters belonging to the subfamily I lip genes 
appeared (i.e. lipA, lipB, lipE, lipG, lipH and lipI), that is similar to the relationship between 
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the protein sequences (Stewart & Cullen, 1999). Cladistic analysis based on promoter 
sequences showed two main branches within the family. The main branch included all but 
one of the promoter sequences of the lip family I, conformed by lipA, lipB, lipE, lipG, lipH and 
lipI. The sole exception was lipH, which appeared more closely linked to the lipF promoter 
sequence. The sequences corresponding to the promoters of lipD, lipC and lipJ, which 
comprise the subfamilies II, III and V, respectively, were more divergent. This grouping was 
also apparent when the ClustalW analysis was repeated using 2 Kb of all promoter 
sequences. Both algorithms were able to detect an evolutionary relationship between 
upstream regions of the lip genes, but the Jotun Hein algorithm was more sensitive to detect 
this relation. The fact that very similar results were obtained using two different algorithms, 
suggests that this association is not spurious and supports the finding of a common 
organization of the analyzed sequences. Jotun-Hein was also used because it had been 
employed for analysis of the LiP proteins (Stewart & Cullen, 1999). 
 

 
Fig. 1. Cladistic analysis of 1 Kb promoter sequences of 10 lip (lignin peroxidase) genes from 
Phanerochaete chrysosporium. Each sequence in the analysis corresponds to 1 Kb upstream of 
the ATG codon. Analysis was performed with the Jotun-Hein (Hein, 1990) algorithm on 
LASERGENE package software.  

When the Clustal analysis included only the six promoter sequences of the genes belonging 
to the subfamily I of lip genes, a similar order appeared where lipH again corresponded to 
the most distant member of the group (Figure 2). 
 

 
Fig. 2. Cladistic analysis of 1 Kb of six lip promoters corresponding to the Subfamily I 
classification from Phanerochaete chrysosporium. Each sequence in the analysis corresponds to 
1 Kb upstream of the ATG codon. Analysis was done with the ClustalW (Thompson et al., 
1994) algorithm on DNAStar software. 

2.1.2 Defining an ATG upstream region for analysis  
We then analyzed the available ATG upstream region of the ten lip genes using the 
Genomatix bioinformatics tool that searches conserved cis-regulatory elements within 
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TRANSFAC and JASPAR databases. It is not possible to precisely define promoter 
sequences, as the transcription start site is unknown in this case and it is not easy in general 
to define how far upstream distal sequences control gene expression. Therefore, sequences 
upstream of the ATG of 500, 1000 and 2000 bp were analyzed for the presence of conserved 
cis-regulatory elements or TFBSs. With this tool, a multiplicity of elements was evident; 
however, no clear pattern of structural organization emerged. Thus, a more sophisticated 
method to find sequence patterns was needed. Among programs that perform this kind of 
analysis, MEME (Multiple Expectation maximization for Motif Elicitation) and Gibbs are 
two well-documented programs for this purpose. We chose MEME because the algorithm 
for maximation of Multiple Expectation allows defining more clearly a motif pattern 
independent of its position in the sequence. On the other hand, TRANSFAC and JASPAR 
allow the identification of putative binding sites only for known transcription factors, but do 
not find new regulatory elements, especially in organisms that have not been extensively 
studied. When upstream sequences (500, 1000 and 2000 bp) were analyzed using MEME 
software, a pattern of elements emerged that split the lip promoters into two groups, where 
the genes of one group again corresponded to the members of subfamily I of lip genes. This 
separation was subtle when analyzing 500 bp or 2000 bp of the promoter sequence but was 
more evident when analyzing 1000 bp of the regulatory sequences. An additional reason for 
choosing 1 Kb ATG upstream sequences for analysis is that, as explained above, 
transcriptional outcome can be influenced by cooperative interactions of proteins, mainly 
through the formation of DNA loops. This looping depends on the probability of two sites 
coming together, which is optimal for cyclization at 500 bp and decreases at distances 
greater than 1000 bp (Matthews, 1992). For these reasons, a promoter size of 1000 bp was 
chosen for further studies. 

2.2 Analytical strategy to identify regulatory elements  
The next step consisted of applying a set of analytical tools to identify putative regulatory 
elements within the lip gene family. In a step-wise strategy, first putative motifs were 
identified with MEME; then, for each motif, integrated databases were searched for genes 
that contained these motifs in their promoters with the MAST software. Briefly, MAST takes 
any motif and transforms it into a position-dependent scoring matrix that is used to scan a 
curated database of promoter sequences. Finally, to identify if this sequence corresponds to 
a transcriptional binding site, the best match obtained in the yeast database is used by 
MAST to screen a transcription factors database in order to identify the TF that recognizes 
the yeast sequence with the motif identified by MEME. The database used for this purpose 
was YEASTEXTRACT. To summarize, a general streamlined approach was defined to 
identify a putatively functional structure in eukaryotic promoters, as outlined in Figure 3. 
The flowchart shows the pathway for the identification of putative motifs, TFBSs and 
transcription factors involved in the expression of genes containing such motifs. With this 
analysis, five conserved motifs were identified and characterized in the promoters of lip 
genes from P. chrysosporium.  

2.2.1 Discovery of motifs within promoters  
The search for signals within the DNA sequence was carried out using MEME (Multiple EM 
for Motif Elicitation), a tool that was designed to discover signals (called motifs) within a set 
of sequences believed to share some common (but unknown) property, such as binding sites 
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Fig. 3. Flowchart for identifying and testing putative motifs and transcription factors 
involved in gene expression of lip genes. Algorithms used at each stage are discussed in the 
text. 

for shared transcription factors or TFBSs in a set of promoters (Bailey et al., 2006). 
Expectation-maximization (EM) algorithm is a method for finding maximum likelihood or 
maximum a posteriori estimates of parameters in statistical models, where the model 
depends on unobserved latent variables. EM is an iterative method which alternates 
between performing an expectation (E) step, which computes the expectation of the log-
likelihood evaluated using the current estimate for the latent variables, and a maximization 
(M) step, which computes parameters maximizing the expected log-likelihood found on the 
E step. These parameter-estimates are then used to determine the distribution of the latent 
variables in the next E step (Dempster et al., 1977). By default, MEME assumes that every 
position in every sequence is equally likely a priori to be a motif site and can search for DNA 
motifs on either strand (Bailey et al., 2010). MEME finds motifs by identifying highly 
correlated stretches of letters in the input sequences and applies statistical models to 
validate the most significant motifs contained in these input sequences. Finally, it reports an 
E-value for each motif, giving a measure of the motif’s validity or likelihood of not being a 
random sequence artifact (Bailey & Elkan, 1994). MEME can be accessed at the web server 
hosted at the http://meme.ncbr.net site and is preferentially set for searching motifs within 
sequences of 1 Kb (Bailey et al., 2006).  
A TFBS is defined as a conserved, relatively short sequence element of 10-15 bp (Stepanova 
et al., 2005). Since TFBSs tend to be short and degenerate, the discovery of these sequences is 
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a difficult task. The motif discovery algorithm searches for a minimum of two elements of 
similar short sequences of at least 6 bp; these motifs are searched within sliding window 
frames of 6 to 300 bp of width (Bailey et al., 2006). We therefore searched for motifs 
performing a serial analysis using 15-300, 20-300, 50-300, 100-300, 150-300, 200-300, 250-300 
and 300-300 bp frames. The analysis was performed for all 10 lip promoters and showed a 
conserved pattern of motifs (Figure 4). This analysis produced a readily apparent structural 
organization of the lip genes. The motifs were most clearly noticeable with frames 15-300, 
20-300 and 50-300 bp and declined with wider frames. For this reason, all further analyses 
were performed using the 50-300 bp window frame. 
 

 
Fig. 4. The 5 most conserved motifs of the lip genes promoters. Maximum number of motifs: 
5; windows for each motif from 50 to 300 bp. All other parameters of the MEME software 
corresponded to the default setting. 

MEME analysis was performed using FASTA flat-files. Files containing 1 Kb of the promoter 
sequence from each of the 10 genes were aligned and searched for motifs with ZOOPS (Zero 
Or One Per Sequence) analysis. A pattern of five motifs emerged, which also corresponds to 
the maximum number of motifs allowed when using a 50-300 bp window frame (Figure 4). 
As a control, the same analysis was conducted with the promoter sequences from the 
subfamily I genes; when only the six promoters of the subfamily I genes were aligned, a 
most striking pattern of motifs emerged. Using 6-300, 20-300, 50-300 and 100-300 bp frames 
maintained the conspicuous pattern of five motifs that clearly indicated again a conserved 
organization of all six members of the subfamily I lip genes (Figure 5).  
 

 
Fig. 5. Summary of the 5 most conserved motifs of the subfamily I of lip genes promoters.  
Maximum number of motifs: 5; windows per each motif from 50 to 300 bp. All other 
parameters of the MEME software were the default setting. 
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Analysis was also done using the 50-300 bp window frame or motif width window (number 
of characters in the sequence pattern), since the five motifs obtained presented significant E-
values ranging from e-018 to e-003, which also corresponded to the best E-values of all 
analyzed sliding windows. Cut off E-values were set at e-003. The obtained motifs 
corresponded to ambiguous regular expression (LOGO) sequences of 50 to 92 bp for the five 
motifs identified in the subfamily I lip promoters and between 50 and 94 bp for the 
promoters of the ten lip genes using the MEME algorithm. To determine if the motifs found 
were statistically significant, the sequences were shuffled and compared to the former 
(training) set. Analysis of the shuffled sequences revealed that the observed motifs and the 
statistical significance were lost. Therefore, the structuring found in the promoter sequences 
was not trivial and possibly corresponds to a functional organization. 

2.2.2 Analysis of motifs using MAST 
In order to illustrate the effectiveness of the proposed strategy, as outlined in the flow sheet 
shown in Figure 3, analysis of the promoters of the subfamily I lip genes is described. The 
next step consisted in analyzing MEME results (LOGO) and regular expression sequences 
for the five motifs using MAST (Motif Alignment and Search Tool), which searches 
promoter motifs (best possible matches) in wide upstream sequences available in different 
databases. As mentioned before, MAST uses a position-dependent scoring matrix to search 
in a sequence for a segment with the best match. To perform this, MAST transforms any 
sequence pattern (motif) into a position-dependent scoring matrix. This means that a 
position-dependent scoring matrix is not applied to the end of a sequence or if any gap is 
present. The sequences are ranked according to their E-values. MAST searches databases for 
sequences that match the motifs and outputs detailed annotation showing genes that 
contain these motifs (Bailey & Gribskov, 1998) (Figure 6).  
The findings of MAST in a particular upstream sequence database allowed obtaining a 
group of genes containing particular motifs in their promoters. The most comprehensive 
eukaryotic promoter databases are human, Drosophila and mouse; however, considering the 
relative phylogenetic closeness to the model fungal species P. chrysosporium, a yeast 
database was used for the analysis. The Saccharomyces cerevisiae genome database (SGD) is a 
repository of organized collection of yeast proteins and genes and their corresponding 
regulatory sequences and is probably the most appropriate database available today for 
fungal species. Using the SGD, the best possible match was found for motifs on either strand 
of each promoter. The obtained matches corresponded to defined and unambiguous 
sequences for the five motifs identified using the MEME algorithm. Sequences were 
subjected to MAST analysis for each separate motif and were also analyzed when combined. 
The best combined matches were found for these five motifs with varying E-values: motifs 
1, 2 and 3 exhibited E-values of e-005, motifs 4 and 5 presented values of e-003 and e-002, 
respectively. The number of genes that contained the identified motifs that contained the 
identified motifs varied from five for motif 1, to 14 or 16 genes for motifs 2, 3 and 4 and 
enlarged to 23 genes for motif 5 (Table 1).  

2.2.3 Analysis of conserved TFBSs inside each motif 
Once the yeast genes that share the motif found in ATG upstream sequences of lip genes 
were obtained, transcriptional factors that bind to these sequences were analyzed with  
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  Motif 1. E-value: 1.8e-019; Width:92 

 
  Motif 2. E-value: 1.2e-008; Width: 90 

 
  Motif 3.  E-value: 3.4e-006;  Width: 68 

  Motif 4. E-value: 1.2e-005; Width: 50 

 
  Motif 5. E-value: 1.4e-003; Width: 63  

Fig. 6. LOGO representation of Motifs 1 to 5 from promoter sequences of the subfamily I lip 
genes. 

YEASTRACT-DISCOVERER (YEAst Search for Transcriptional Regulators And Consensus 
Tracking; http://www.yeastract.com), a tool developed to support the analysis of transcription 
regulatory associations in yeast which can be used to identify complex motifs over-represented 
in promoter regions of co-regulated genes (Monteiro et al., 2008). This database contains over 
48.000 documented regulatory associations between transcription factors (TFs) and target genes 
(Abdulrehman et al., 2011), and includes 284 specific DNA binding sites for 108 characterized TFs 
(Monteiro et al., 2008). To identify TFBS inside of the motifs, Yeastract uses the Smith–Waterman 
algorithm that allows local alignments between sequences (Smith & Waterman, 1981). The 
pattern matching method of YEASTRACT in search of TFBSs leads to the identification of 
putative target genes for specific TFs (Monteiro et al., 2008). The SGD database was therefore 
used to find yeast genes containing the motifs identified within the promoter sequences of the six 
genes of the subfamily I lip genes from P. chrysosporium.  
For each motif (1 to 5), a list of yeast genes was identified. The genes that contained one of 
these motifs in their promoter sequence and that are included in the YEASTRACT database 



 
Selected Works in Bioinformatics 

 

68

were further analyzed. Each gene was queried using the SGD and finally searched with GO 
(Gene Onthology) and its nature determined according to three defined categories: 
Biological process, molecular function and cellular component (Table 2).  
 

Motifs 1-5 Subfamily I Group of Genes 
Motif 1 (+)|(-) 
Evalue: 1e-05 

Motif 2 (+)|(-) 
Evalue: 1e-05 

Motif 3 (+)|(-) 
Evalue: 1e-05 

Motif 4 (+)|(-) 
Evalue: 1e-03 

Motif 5 (+)|(-) 
Evalue: 1e-02 

YGR209C|TRX2 
YLR173W|YLR173W
YPR094W|RDS3 
YLR246W|ERF2 
YIR042C|YIR042C 

YHR135C|YCK1
YPL069C|BTS1 
YDR101C|ARX1
YKL085W|MDH1
YGL047W|ALG13
YER039C-
A|YER039C-A 
YER040W|GLN3
YGL186C|TPN1 
YIL071C|PCI8 
YER038C|KRE29
YJR148W|BAT2 
YBL066C|SEF1 
YKL065C|YET1 
YKL064W|MNR2
 

YOL132W|GAS4 
YOR034C-
A|YOR034C-A 
YDR477W|SNF1 
YPR181C|SEC23 
YPR182W|SMX3 
YDR059C|UBC5 
YDR060W|MAK21 
YHR112C|YHR112C
YHR113W|YHR113W
YOL162W|YOL162W
YDR316W|OMS1 
YGR094W|VAS1 
YNL268W|LYP1 
YOR042W|CUE5 
YMR303C|ADH2 
YMR304W|UBP15 
 

YLR194C|YLR194C
YJL006C|CTK2 
YDL174C|DLD1 
YDL173W|YDL173W
YKL020C|SPT23 
YKL019W|RAM2 
TS(CGA)C|SUP61 
YML123C|PHO84 
YML121W|GTR1 
YML028W|TSA1 
YBR170C|NPL4 
YNL033W|YNL033W
YBR268W|MRPL37
YLR297W|YLR297W
 

YFR021W|ATG18 
YGR098C|ESP1 
YCR084C|TUP1 
YCR086W|CSM1 
YKR024C|DBP7 
YKR025W|RPC37 
YLR327C|TMA10 
TS(GCU)L|TS(GCU)L 
TG(GCC)P2|TG(GCC)P2 
TY(GUA)F2|SUP6 
YFR028C|CDC14 
YPL103C|FMP30 
YPL101W|ELP4 
YOR180C|DCI1 
YOR181W|LAS17 
YDR178W|SDH4 
YOR140W|SFL1 
YDL079C|MRK1 
YCR076C|YCR076C 
YKL041W|VPS24 
TY(GUA)M1|SUP5 
YBR068C|BAP2 
YGR274C|TAF1 

5 14 16 14 23 

Table 1. Group of genes found in S. cerevisiae that share TFBSs found in Motifs 1 to 5. 

The information of “Cellular component” for each gene was retrieved directly from the SGD 
database for every individual gene identified in the previous step. YEASTRACT 
simultaneously searches for TFBSs contained in each motif found and also searches for 
documented TFs that bind to these motifs (See Figure 3). This approach reduces output to a 
tractable size, amenable to different kinds of analysis (Table 2).  
Putative functions of the identified genes suggest an interesting grouping: Motif 1 includes a 
single gene (Trx2) involved in cellular response to oxidative stress that presents electron 
carrier activity. It is noteworthy that the gene Trx2 corresponds to a cytoplasmic thioredoxin 
isoenzyme that is present in fungal cell walls. Motif 2 is found mainly in genes related to 
nitrogen metabolism and protein biosynthesis and appears to participate in biological 
processes of cell aging. Several of these genes are involved in biosynthetic processes of 
amino acids, amines and isoprenoids and also in the catabolism of amino acids. Motif 3 
seems to be related to biological processes of cellular response to nitrogen and carbon 
metabolism and possibly, growth and differentiation. Genes containing this motif are 
involved in catabolic processes and cell aging, including cellular response to nitrogen 
starvation and eventually fungal cell wall assembly. Motif 3 is the most proximal motif 
identified and includes the TATA-box. This cis-element is conserved in all members of the 
subfamily I lip genes and also in all members of the lip gene family (in Figure 4 it 



 
Understanding LiP Promoters from Phanerochaete chrysosporium: A Bioinformatic Analysis 

 

69 

corresponds to motif 4, the most proximal regulatory element for all genes, with the 
exception of lipC). Indeed, the TATA–box is conserved in approximately 30% of all 
eukaryotic genes (Mariño-Ramírez et al., 2004) and therefore might correspond to an 
ancestral regulatory feature. TATA element recognition has remained constant over the 
course of evolution. Genes encoding TATA-binding proteins (TBPs) have been cloned from 
organisms ranging from archaea to human and all share a phylogenetically conserved 180-
residue carboxyterminal or core segment, which supports all of the protein’s biochemically 
important functions in RNA Polymerase II transcription (Patikoglou et al., 1999). Motif 4 is 
present in several genes that do not seem to relate to a common biological process. 
However, one of these is an ion transporter. The finding of this motif in a gene coding for a 
manganese/phosphate transporter is specially striking, since MnPs also participate in lignin 
catabolism. This motif corresponds to the most distal element in the studied promoter (see 
Figure 5). Motif 5 is related to mitosis, cell cycle, chromosome segregation and stress 
response. The relevance of genes associated with each motif will be discussed below.  
Since all genes analyzed were identified in the yeast database (SGD), an important 
consideration was to determine if orthologous genes exist in the genome of P. chrysosporium. 
A preliminary search in the genome of this basidiomicete (Martínez et al., 2004) indicated 
that all genes shown in Table 2, with the exceptions of ARX1, MDH1, SPT23, GTR1 and 
DLD1, are present in the P. chrysosporium genome. 
 

MEME 
MAST AND 
YEASTRACT 
ANALYSIS 

Saccharomyces cerevisiae Genome Database 
GO ANNOTATIONS 

BIOLOGICAL PROCESS MOLECULAR 
FUNCTION 

CELLULAR 
COMPONENT 

M
O

TI
F 

1 

YGR209C|TRX2 

Cell redox homeostasis - cellular response 
to oxidative stress 
ER to Golgi vesicle-mediated transport 
Retrograde vesicle-mediated transport, 
Golgi to ER 
Vacuole fusion (non-autophagic) - 
vacuole inheritance 
Protein deglutathionylation 
Regulation of DNA replication 
Sulfate assimilation 

Disulfide 
oxidoreductase 

Cytosol 
Fungal-type vacuole 

M
O

TI
F 

2 

YJR148W|BAT2 

Branched chain family amino acid 
biosynthetic process 
Branched chain family amino acid 
catabolic process 

Branched-chain-
amino-acid 
transaminase  

No manually curated 

YPL069C|BTS1 Terpenoid biosynthetic process Farnesyltranstra-
nsferase  No manually curated 

YKL085W|MDH1

Aerobic respiration - Tricarboxylic acid 
cycle 
Chronological cell aging - Replicative cell 
aging 

L-malate 
dehydrogenase  

Mitochondrion - 
mitochondrial matrix 

YDR101C|ARX1 Ribosomal large subunit biogénesis Unknown 

Cytoplasm - Colocalizes 
with cytosolic large 
ribosomal subunit – 
Nucleoplasm 

YBL066C|SEF1 Unknown Unknown Unknown 

YER040W|GLN3 Nitrogen catabolite activation of 
transcription 

Sequence-specific 
DNA binding 
transcription factor  

Cytosol – Nucleus 
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M
O

TI
F 

3 

YMR303C|ADH2

Amino acid catabolic process to alcohol 
via Ehrlich pathway 
Ethanol metabolic process – Fermentation
NADH oxidation 

Alcohol 
dehydrogenase 
(NAD) activity 

No manually curated 

YDR477W|SNF1 

Cellular response to nitrogen starvation 
Invasive growth in response to glucose 
limitation  
Pseudohyphal growth 
Regulation of carbohydrate metabolic 
process 
Positive regulation of gluconeogenesis 
Biofilm formation - Cell adhesion 
Protein phosphorylation - Signal 
transduction  
Negative regulation of translation 
Replicative cell aging 

AMP-activated 
protein kinase activity

AMP-activated protein 
kinase complex 
Cytoplasm 
Fungal-type vacuole 
Nuclear envelope lumen 
Nucleus 

YPR182W|SMX3 Nuclear mRNA splicing, via spliceosome Unknown 

U1 snRNP  
U4/U6 x U5 tri-snRNP 
complex  
U5 snRNP 

YGR094W|VAS1 Valyl-tRNA aminoacylation Valine-tRNA ligase 
activity 

Cytoplasm 
Mitochondrion 

YOL132W|GAS4 Ascospore wall assembly 1,3-Beta-
glucanosyltransferase Fungal-type cell wall 

M
O

TI
F 

4 

YKL020C|SPT23 

Fatty acid metabolic process 
Positive regulation of transcription from 
RNA polymerase II promoter 
Response to cold 

Transcription 
activator activity 

Integral to endoplasmic 
reticulum membrane 
Nucleus 

YML121W|GTR1 

Chromatin silencing at telomere 
Phosphate transport 
Transcription from RNA polymerase I / 
III promoters 

GDP / GTP binding 

Cytoplasm -GSE 
complex 
Late endosome 
membrane 
Nucleus - Vacuolar 
membrane 

YBR268W|MRPL37 Mitochondrial translation Structural constituent 
of ribosome 

Mitochondrial large 
ribosomal subunit 

YDL174C|DLD1 Aerobic respiration 
Cellular carbohydrate metabolic process 

D-lactate 
dehydrogenase 
(cytochrome) activity

Mitochondrial inner 
membrane 
Mitochondrion 

YML123C|PHO84
Manganese ion transport 
Phosphate transport - Polyphosphate 
metabolic process 

Inorganic phosphate 
transmembrane 
transporter activity 
Manganese ion 
transmembrane 
transporter activity 

Integral to plasma 
membrane 

M
O

TI
F 

5 

YFR028C|CDC14 

Mitotic cell cycle 
Nucleolus organization 
Protein dephosphorylation 
Regulation of exit from mitosis 

Phosphoprotein 
phosphatase  

Nucleolus 
RENT complex 
Spindle pole body 

YGR098C|ESP1 

Apoptosis 
Mitotic sister chromatid segregation 
Negative regulation of protein 
phosphatase type 2A activity 
Regulation of exit from mitosis 
Regulation of mitotic spindle elongation 

Cysteine-type 
endopeptidase  

Cytoplasm 
Nucleus 
Spindle 

YDR178W|SDH4 Cellular respiration 
Mitochondrial electron transport, 

Contributes to 
succinate 

Mitochondrial 
respiratory chain 
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succinate to ubiquinone 
Tricarboxylic acid cycle 

dehydrogenase 
(ubiquinone) activity

complex II 

YOR180C|DCI1 Not clearly defined Not clearly defined Peroxisomal matrix 

YOR181W|LAS17

Actin cortical patch localization 
Actin filament organization / actin 
polymerization or depolymerization 
Positive regulation of actin filament 
bundle assembly 
Bipolar cellular bud site selection 
Cytokinesis – Endocytosis 
Response to osmotic stress 

Cytoskeletal protein 
binding Actin cortical patch 

YOR140W|SFL1 

Negative regulation of transcription from 
RNA polymerase II promoter 

Specific 
transcriptional 
repressor activity 
Specific RNA 
polymerase II 
transcription factor 
activity 
Transcription 
activator activity 

Nuclear chromosome 

YKR024C|DBP7 Ribosomal large subunit assembly 
rRNA processing 

ATP-dependent RNA 
helicase activity Nucleolus 

YDL079C|MRK1 
Protein phosphorylation 
Regulation of protein catabolic process 
Response to stress 

Protein 
serine/threonine 
kinase activity 

Unknown 

YGR274C|TAF1 

Gene-specific transcription from RNA 
polymerase II promoter 
General transcription from RNA 
polymerase II promoter 
RNA polymerase II transcriptional 
preinitiation complex assembly 

Chromatin binding 
RNA polymerase II 
transcription factor 
activity 
Histone 
acetyltransferase 
activity 
Protein complex 
scaffold 
TATA-binding 
protein binding 

Transcription factor 
TFIID complex 

YKL041W|VPS24

Intralumenal vesicle formation 
Late endosome to vacuole transport 
Ubiquitin-dependent protein catabolic 
process via the multivesicular body 
sorting pathway 

Protein binding Cytoplasm 
ESCRT III complex 

Table 2. List of relevant genes obtained by YEASTRACT and grouped by motif. GO 
classification is described for each gene. 

2.2.4 Search of transcription factors that recognize TFBSs inside motifs 
The YEASTRACT database also makes publicly available up-to-date information on 
documented regulatory associations between TFs and DNA-binding sites in S. cerevisiae. 
Information in this database has been curated on precise tests of the associations between 
TFs and DNA-binding sites provided by experiments such as Chromatin 
ImmunoPrecipitation (ChIP), ChIP-on-chip and Electrophoretic Mobility Shift Assay 
(EMSA), that prove the direct binding of the TF to the target gene promoter region. 
Alternatively, the effect on target-gene expression of the site-directed mutation of the TF 
binding site in its promoter region was also considered by direct experimental evidence, 
which strongly suggests that the TF interacts with that specific target (Abdulrehman et al., 

M
O

TI
F 
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2011). Analysis of TFs that bind to TFBSs from genes listed in Table 2 was performed for 
motifs 1 to 5. The TFs found to bind to motif 1 are shown in Table 3. The identified TFs are 
mainly involved in the control of the cell cycle and unfolded protein response, and to a 
lesser extent, in inter-organelle communication and energy metabolism. TFs that recognize 
motifs 2-5 also include Ash1p, Hac1p and Mot3p. Strikingly, the transcription factor Stb5p, 
an activator of multidrug resistance genes, binds to motifs 2, 4 and 5. Other TFs identified 
are also involved in the regulation of energy metabolism and cell cycle. It is important to 
point out that single base changes in the tested TFBSs dramatically increase the number of 
putative TFs that bind to them, suggesting that the identified TFs are not likely to be chosen 
randomly. 
 
Transcription 

Factor Consensus Position Strand Protein Info 

Target Sequence: Motif1_Subfamily I (size 92) 

Ace2p, 
Swi5p ACCAGC -19 R 

Transcription factor 
that activates 
expression of early 
G1-specific genes, 
localizes to daughter 
cell nuclei after 
cytokinesis and delays 
G1 progression in 
daughters, 
localization is 
regulated by 
phosphorylation; 
potential Cdc28p 
substrate 

Transcription factor 
that activates 
transcription of 
genes expressed at 
the M/G1 phase 
boundary and in G1 
phase; localization 
to the nucleus 
occurs during G1 
and appears to be 
regulated by 
phosphorylation by 
Cdc28p kinase 

Ash1p YTGAT 

-87, -48 F Zinc-finger inhibitor of HO transcription; 
mRNA is localized and translated in the 
distal tip of anaphase cells, resulting in 
accumulation of Ash1p in daughter cell 
nuclei and inhibition of HO expression; 
potential Cdc28p substrate 

-68 R 

Hac1p CCAGC -20 R 

bZIP transcription factor (ATF/CREB1 
homolog) that regulates the unfolded 
protein response, via UPRE binding, and 
membrane biogenesis; ER stress induced 
splicing pathway utilizing Ire1p, Trl1p and 
Ada5p facilitates efficient Hac1p synthesis 

Mot3p 

WAGGTA 

-55 F 

Nuclear transcription factor with two Cys2-
His2 zinc fingers; involved in repression of 
a subset of hypoxic genes by Rox1p, 
repression of several DAN/TIR genes 
during aerobic growth, and repression of 
ergosterol biosynthetic genes 

TAGGTA 
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Rtg1p, Rtg3p GGTAC -22 F 

Transcription factor 
(bHLH) involved in 
interorganelle 
communication 
between 
mitochondria, 
peroxisomes, and 
nucleus 

Basic helix-loop-
helix-leucine zipper 
(bHLH/Zip) 
transcription factor 
that forms a 
complex with 
another bHLH/Zip 
protein, Rtg1p, to 
activate the 
retrograde (RTG) 
and TOR pathways 

Target Sequence: Motif2_Subfamily I (size 90) 

Ash1p YTGAT -68 F 

Zinc-finger inhibitor of HO transcription; 
mRNA is localized and translated in the 
distal tip of anaphase cells, resulting in 
accumulation of Ash1p in daughter cell 
nuclei and inhibition of HO expression; 
potential Cdc28p substrate 

Hac1p CCAGC -1 R 

bZIP transcription factor (ATF/CREB1 
homolog) that regulates the unfolded 
protein response, via UPRE binding, and 
membrane biogenesis; ER stressinduced 
splicing pathway utilizing Ire1p, Trl1p and 
Ada5p facilitates efficient Hac1p synthesis 

Stb5p CGGNS 

-58 F Activator of multidrug resistance genes, 
forms a heterodimer with Pdr1p; contains a 
Zn(II)2Cys6 zinc finger domain that 
interacts with a PDRE (pleotropic drug 
resistance element) in vitro; binds Sin3p in 
a two-hybrid assay 

-56 R 

Target Sequence: Motif3_Subfamily I (size 68) 
Mot3p AAGGKA -62 F Described before 

Target Sequence: Motif4_Subfamily I (size 50) 

Stb5p CGGNS 
-25, -14 F 

Described before 
-18, -40 R 

Gsm1p CGGNNNN
NNNNCGG -25 F 

Putative zinc cluster protein of unknown 
function; proposed to be involved in the 
regulation of energy metabolism, based on 
patterns of expression and sequence 
analysis 

Target Sequence: Motif5_SubfamilyI (size 63) 

Gcr1p CTTCC -56 R 

Transcriptional activator of genes involved 
in glycolysis; DNA-binding protein that 
interacts and functions with the 
transcriptional activator Gcr2p 
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Mot3p CAGGYA -21 F Described before 
Stb5p CGGNS -35 F Described before 

Xbp1p CTCGA -51 F 

Transcriptional repressor that binds to 
promoter sequences of the cyclin genes, 
CYS3, and SMF2; expression is induced by 
stress or starvation during mitosis, and late 
in meiosis; member of the Swi4p/Mbp1p 
family; potential Cdc28p substrate 

Table 3. Transcription factors that recognize TFBSs in Motifs 1 - 5. 

The recognized consensus sequence, relative position and bound strand is indicated. For 
each TF the protein information deposited in SGD and Yeastract is provided. 

3. Discussion  

This work was initiated as an attempt to understand and define the promoter structure of 
the 10 lip genes from the ligninolytic basidiomycete P. chrysosporium, assuming that the 
members of this family are co-regulated and have a common code for this particular 
biological function. The first encouraging hint was the discovery of common TFBS 
sequences which suggested a coordinated response to the various processes involved in 
lignin biodegradation. Furthermore, the presence of a common organization might permit 
the identification of additional genes in the P. chrysosporium genome that participate in 
lignin degradation, on the basis that they received similar regulatory "inputs". 
Multiple alignment of all lip promoters yielded short homologous sequences that included 
experimentally validated TFBSs in other eukaryotic organisms, including yeast. These 
results were very encouraging. Hoping to find that similar promoters would present 
comparable physiological responses, transcriptional levels of lip genes of the fungus grown 
in C- and N-limited cultures were examined. However, no clear correlation between 
genomic organization and transcript levels was observed under these conditions. Analysis 
of the 10 promoters using multiple programs and databases only showed scattered and 
ambiguous (or degenerate) TFBSs and no clear structural organization emerged. The use of 
MEME software represented a breakthrough, since it allowed finding sequences that share a 
common (but hidden) property in conserved positions, which do not correspond to a priori 
experimentally determined TFBSs (called Ab Initio). MEME detected the five relevant and 
statistically significant motifs presented in this work. This is consistent with the group of six 
lip genes with a highly conserved gene and protein structure, which had been previously 
reported by Stewart and Cullen (1999). This finding suggested that the subfamily I lip genes 
derived from several duplication events of an ancestral gene.  
The next task consisted in determining if there is a common biological function associated to 
each motif. For this, the sequence of each motif was analyzed in the YEASTRACT database 
which identified yeast genes which also contained any of the five motifs within their 
regulatory sequences. Indeed, one or more genes were found for each motif which 
contained curated and experimentally validated TFBSs. How do these genes relate to the 
biological process of lignin biodegradation? In order to answer this question, each motif was 
analyzed. 
Motif 1 included a single gene associated to the cellular response to oxidative stress. During 
secretion of enzymes involved in the ligninolytic process, such as LiPs and MnPs, oxidative 
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stress is a natural condition of P. chrysosporium and resistance to oxidative stress is probably 
an important function (Zacchi et al., 2000; Belinky et al., 2003; Jiang et al., 2005). To date 
there is no clear evidence in the literature on the mechanisms used by P. chrysosporium to 
tolerate the highly oxidative environment produced during lignin degradation. An 
orthologue of the yeast TRX2 gene, which encodes a cytoplasmic thioredoxin isoenzyme, 
could be involved in the protection of P. chrysosporium cells against oxidative and reductive 
stress. Motif 1 is also related to the secretion of vesicles, which is fully consistent with the 
manner in which these enzymes are carried into the extracellular medium.  
Motif 2 is contained in several genes that do not share an obvious common function, 
although most of them are related to nitrogen metabolism, the Krebs cycle and ribosomal 
biogenesis. As is well known, LiPs are induced in response to low nitrogen and low carbon 
conditions, which suggests that the cell might be increasing protein synthesis, a necessary 
process for hyphal remodeling and growth.  
Motif 3 is common to genes involved in cellular response to nitrogen and carbon 
metabolism, including gluconeogenesis. Some genes containing this motif are involved in 
the nitrogen cellular response to starvation and regulation of carbohydrate metabolic 
processes. There is a partial overlap of biological functions (though not of genes) with Motif 
2, however, other interesting biological processes also seem to be involved: invasive growth 
in response to glucose limitation, which suggests remodeling of fungal cellular structures, 
such as cell wall assembly. It is known that during the ligninolytic process, P. chrysosporium 
apical tips of hyphae penetrate the wood through the tracheids and secrete ligninolytic 
enzymes. The yeast gene YDR477W | SNF1 contains motif 3 in its promoter and encodes an 
AMP-activated serine / threonine protein kinase, which is involved in signal transduction 
and found in a complex with proteins required for the transcription of glucose-repressed 
genes and involved in sporulation and peroxisome biogenesis. This gene might be related to 
stress tolerance regulation and gene expression under low carbon conditions, as would 
occur in secondary metabolism (ligninolysis), which is coupled to sporulation (structural 
remodeling of the fungus) and possibly, peroxisome biogenesis.  
Motif 4 is present in the promoter of two yeast genes described as ion transporters which are 
of interest in relation to lignin biodegradation: genes YML121W | gtr1 and YML123C | 
PHO84 are involved in phosphate transport, which is essential for nucleic acids synthesis, 
and therefore also associated to cell cycle regulation, which in turn might be related to 
hyphal growth. YML121W | gtr1 encodes a cytoplasmic GTP binding protein and negative 
regulator of the Ran/Tc4 GTPase cycle; it is also a component of the GSE complex required 
for sorting of Gap1p and is involved in phosphate transport and telomeric silencing, similar 
to human Raga and Ragbir proteins. YML123C | PHO84 is a high-affinity inorganic 
phosphate (Pi) and low-affinity manganese transporter. The latter is relevant in the context 
ligninolysis since Mn+2 has a regulatory role in the formation of LiPs (Rabinovich et al., 
2004). Transport of this ion is important for the expression and activity of all kinds of 
ligninolytic enzymes from P. chrysosporium. Motif 4 is the most distal motif identified in the 
lip gene promoters. Due to its location on the promoter, it is tempting to speculate that this 
motif might be involved in DNA looping.   
Motif 5 appears to be related to mitosis, cell cycle, chromosome segregation and stress 
response. The two yeast genes with motif 5 in their promoters and selected with the greatest 
stringency by YEASTRACT, YFR028C | CDC14 and YGR098C | ESP1, are required for the 
regulation of mitotic exit. This correlates well with active cell division that occurs in hyphae. 
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Other promoters which contain Motif 5, such as those from genes YDL079C | MRK1 (a 
glycogen synthase kinase 3 (GSK-3)) homolog and YOR181W|LAS17 are stress responsive 
genes. Finally, gene YGR274C | TAF1 (which encodes a TFIID subunit and is involved in 
promoter binding and G1 / S progression) and gene YOR140W | SFL1 are RNA polymerase 
II regulators. These functions appear to be complementary to those associated to the other 
motifs.  
How do these regulatory elements coordinate fungal metabolism in natural environments? 
It is well known that filamentous fungi grow by apical extension and lateral branching to 
form mycelial colonies (Richards et al., 2010). Because of key characteristics of hyphae, 
filamentous fungi can efficiently colonize and exploit the substratum on which they grow, 
e.g. wood (Weber, 2002). Fungal cells within a single mycelium are known to autolyse to 
provide nutrients to ensure growth (Zacchi et al., 2000), involving processes related to the 
remodeling of the mycelium. In fungi, vacuoles are very versatile organelles involved in 
protein turnover, cellular homeostasis, membrane trafficking, signaling and nutrition (Veses 
et al., 2008), as well as progression through cell cycle checkpoints (Richards et al., 2010). 
Networks of spherical and tubular vacuoles have been found in a range of filamentous 
fungi, including the wood rotting plant pathogen Phanerochaete velutina (Richards et al., 
2010). Under LiP producing conditions, hyphal cells undergo a major loss of cellular 
ultrastructure, similar to that observed under oxidative stress (Zacchi et al., 2000). Therefore 
LiPs may be enzymes that are induced under conditions of oxidative stress (Rabinovich et 
al., 2004) and degrade lignin in order to access further carbon sources (Zacchi et al., 2000).  
Taken together, many of the genes shown to contain any of these motifs have in common 
that they regulate genes of relevance associated to the biological processes that occur during 
lignin biodegradation. They include stress, mycelia remodeling which involves changes in 
lipid and carbohydrate metabolism, and mitosis, that lead to organellar /ultrastructural 
reorganization and changes related to the shift to secondary metabolism. In an analogous 
manner, transcription factors that apparently recognize these motifs, also bind TFBSs of 
genes involved in stress response and mitosis, among others (See Table 3).  

4. Final remarks and conclusion 

This work proposes an ordered and step by step approach for the analysis of the putative 
structure of eukaryotic promoters. To test this strategy, the lip gene family from the 
ligninolytic fungus P. chrysosporium was studied. The resulting analysis uncovered an 
organization of TFBSs into structural motifs that is not evident using standard software. The 
MEME software, which searches for signals that are shared by a group of sequences, was 
instrumental to detect these hidden elements. Each of the discovered motifs contains several 
TFBSs. One transcription factor may bind to various sites and hence it is speculated that the 
TFBS pairs group into clusters, which may be bound by the same transcription factor. 
Clusters with TATA-related and CAAT-related pairs have been reported (Ma et al., 2004). 
Also, several TATA-box related triples have been described in the literature (Ma et al., 2004). 
Each motif found in our analysis may represent this clustering of TFBSs and therefore may 
correspond to the basic functional unit of a promoter. The functional promoter may then be 
an organized sequence of motifs, as diagrammed in Figures 5 and 6. A simple sentence can 
be envisioned as an analogy of this regulatory structure: a sentence containing an 
instruction in any language corresponds to a meaningful sequence of words. The promoter 
represents this sentence and each motif corresponds to one of the words. In turn, as each 
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word is composed by several syllables, each motif is built by combining several TFBSs. Just 
as syllables, which contain several letters, isolated TFBSs contain several nucleotides and 
may be present in more than one copy in a single word or appear in several different words 
within the same sentence, but often do not have functional meaning on their own. 
In conclusion, this work proposes an ordered and step by step approach for the analysis of 
the putative structure of eukaryotic promoters. We devised a straightforward in silico 
strategy that permits the identification of promoter structure in a set of related eukaryotic 
genes. To test this strategy the lip gene family from the ligninolytic fungus P. chrysosporium 
was studied. The resulting analysis uncovered an organization of TFBSs into structural 
motifs (that are not evident using standard software) which are present in yeast genes and 
transcription factors involved in diverse processes related to the biological context in which 
ligninolysis is carried out. The structured motifs discovered in this study may represent a 
functional organization of regulatory sequences. A future challenge will be to test other gene 
families in order to determine if the proposed model is a general feature of eukaryotic 
systems.  

5. Acknowledgments 

We wish to thank Dr. Roberta Farrell, Waikato University, New Zealand, for revision of the 
manuscript. 

6. References 

Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., Mira, N.P., Lourenço, A.B., dos Santos, 
S.C., Cabrito, T.R., Francisco, A.P., Madeira, S.C., Aires, R.S., Oliveira, A.L., Sá-
Correia, I. & Freitas, A.T. (January 2011). YEASTRACT: providing a programmatic 
access to curated transcriptional regulatory associations in Saccharomyces cerevisiae 
through a web services interface. Nucleic Acids Research, Vol. 39, No. (Database 
issue, Epub 2010 Oct 23), pp. D136–D140. 

Bailey, T.L. & Elkan, C. (1994). Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. Proceedings of the Second International Conference on 
Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, 
California, USA. 

Bailey, T.L. & Gribskov, M. (1998). Combining evidence using p-values: application to 
sequence homology searches. Bioinformatics. Vol. 14, pp. 48-54.  

Bailey, T.L., Bodén, M., Whitington, T., & Machanick, P. (2010). The value of position-
specific priors in motif discovery using MEME. BMC Bioinformatics, Vol. 11 (April 
2010), pp. 179.  

Bailey, T.L., Williams, N. Misleh, C. & Li, W.W. (2006). MEME: discovering and analyzing 
DNA and protein sequence motifs. Nucleic Acid Research, Vol. 34, No. WebServer 
Issue, pp. W369-W373. 

Belinky, P.A., Flikshtein, N., Lechenko, S., Gepstein, S., & Dosoretz, C.G. (2003). Reactive 
oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. 
Applied and Environmental Microbiology. Vol. 69, No. 11 (November 2003), pp. 6500-
6506. 



 
Selected Works in Bioinformatics 

 

78

Dashtban, M., Schraft, H. & Qin, W. (2009). Fungal conversion of lignocellulosic residues; 
opportunities & perspectives. International Journal of Biological Sciences, Vol. 5, No 6, 
pp. 578-595. 

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum Likelihood from Incomplete 
Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B 
(Methodological), Vol. 39, No. 1, pp. 1–38.  

D'Souza, T.M., Merritt, C.S. & Reddy, C.A. (1999). Lignin-modifying enzymes of the white 
rot basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology, Vol. 
65, No. 12, pp. 5307-5313. 

Farrell, R.L., Murtach, K.B., Tien, M, Mozuch, M.D., & Kirk, T.K. (1989). Physical and 
Enzymatic Properties of Lignin Peroxidase isoenzymes from Phanerochaete 
chrysosporium. Enzyme Microbial Technology, Vol. 11, No. 6, pp. 322-28. 

Han, L., Garcia, H.G., Blumberg, S., Towles, K.B., Beausang, J.F. & Phillips, R. (2009). 
Concentration and length dependence of DNA looping in transcriptional regulation 
Plos One, Vol. 4, No 5., pp. e5621. 

Haygood, R., Babbitt, C.C., Fedrigo, O. & Wray, G.A. (2010). Contrasts between adaptative 
coding and noncoding changes during human evolution. Proceedings of the National 
Academy of Sciences. Vol. 107, No. 17 (May 2010), pp. 7853-7857. 

Hein, J. (1990) Unified approach to alignment and phylogenies. Methods in Enzymology, Vol. 
183, pp. 626-645, Academic Press, Inc. San Diego, California, USA. 

Howard, M.L. & Davidson, E.H. (2004). Cis-Regulatory control circuits in development. 
Developmental Biology, Vol. 271, No. 1, pp. 109-118. 

Jiang, Q., Yan, Y.-H., Hu, G.-K. & Zhang, Y.-Z. (2005). Molecular cloning and 
characterization of a peroxiredoxin from Phanerochaete chrysosporium. Cellular and 
Molecular Biology Letters, Vol. 10, No. 4, pp. 659 – 668. 

Jiang, X.,  Zeng, G., Huang, D., Chen, Y., Liu, F., Huang, G., Li, J., Xi, B. & Liu, H. (2006) 
Remediation of pentachlorophenol-contaminated soil by composting with 
immobilized Phanerochaete chrysosporium. World Journal of Microbiology and 
Biotechnology, Vol. 22, No 9, pp. 909-913. 

Kirk, T.K. & Farrell R.L. (1987). Enzymatic "combustion": the microbial degradation of 
lignin. Annual Review of Microbiology, Vol. 41, pp. 465-505. 

Kirk, T.K., Tien, M., Kersten, P., Kalyanaraman, B., Hammel, K., & Farrell, R.L. (1990). 
Lignin Peroxidase from Fungi Phanerochaete chrysosporium. Methods of Enzymology, 
Vol. 188, p. 159-171, Academic Press, Inc. San Diego, California, USA. 

Lobos, S., Larraín, J., Salas, L., Cullen, D. & Vicuña, R. (1994). Isoenzymes of manganese-
dependent peroxidase and laccase produced by the lignin degrading basidiomycete 
Ceriporiopsis subvermispora. Microbiology, Vol. 140, pp. 2691–2698. 

Ma, X.-T., Qian, M.-P. & Tang H.-X. (2004). Predicting Polymerase II Core Promoters by 
Cooperating Transcription Factor Binding Sites in Eukaryotic Genes. Acta 
Biochimica et Biophysica Sinica, Vol. 36, No. 4, pp. 250–258. 

Mariño-Ramírez, L., Spouge, J.L., Kanga, G.C. & Landsman, D. (2004). Statistical analysis of 
over-represented words in human promoter sequences. Nucleic Acids Research, Vol. 
32, No. 3, pp. 949-958. 

Martínez, D., Larrondo, L.F., Sollewijn, G., Huang, K., Helfenbein, K.G., Ramaiya, P., Detter, 
J.C., Larimer, F., Coutinho, P.M., Henrissat, B., Berka, R., Cullen, D., & Rokhsar, D. 



 
Understanding LiP Promoters from Phanerochaete chrysosporium: A Bioinformatic Analysis 

 

79 

(2004). Genome sequence of the lignocelluloses degrading fungus Phanerochaete 
chrysosporium strain RP78. Nature Biotechnology, Vol. 22, pp. 695-700. 

Martínez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C.P., 
Ferreira, P., Ruiz-Duenase, F.J., Martinez, A.T., Kersten, P., Hammel, K., 
Wymelenbergg, A.V., Gaskell, J., Lindquist, E., Sabat, G., Splinter, S., BonDuranti, 
Larrondo, L.F., Canessa, P., Vicuña, R., Yadav, J., Doddapaneni, H., Subramanian, 
V., Pisabarro, A.G., Lavín, J.L., Oguiza, J.A., Master, E., Henrissat, B., Coutinho, 
P.M., Harris, P., Magnuson, J.K., Baker, S.E., Bruno, K., Kenealy, W., Hoegger, P.J., 
Kües, U., Ramaiya, P., Lucas, S., Salamov, A., Shapiro, H., Tu, H., Chee, C.L., Misra, 
M., Xie, G., Teter, S., Yaver, D., James, T., Mokrejs,  M., Pospisek, I.V. Grigoriev, T. 
Brettin, D. Rokhsar, Berka, R. & Cullen, D. (2009). Genome, transcriptome, and 
secretome analysis of wood decay fungus Postia placenta supports unique 
mechanisms of lignocellulose conversion. Proceedings of the National Academy of 
Sciences, Vol. 106, No. 6, pp. 1954–1959. 

Matthews, K.S. (1992). DNA looping. Microbiology Review, Vol. 56, No. 1, pp. 123-136. 
Monteiro, P.T., Mendes, N.D., Teixeira, M.C., d'Orey, S., Tenreiro, S., Mira, N.P., Pais, H., 

Francisc, A.P., Carvalho, A.M., Lourenço, A.B., Sá-Correia, I., Oliveira, A.L. 
&Freitas, A.T. (2008). YEASTRACT-DISCOVERER: new tools to improve the 
analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic 
Acids Research, Vol. 36, No. 36 Database issue (January 2008), pp. D132-D136. 

Patikoglou, G.A., Kim, J.L., Sun, L., Yang, S.H., Kodadek, T. & Burley, S.K. (1999). TATA 
element recognition by the TATA box-binding protein has been conserved 
throughout evolution. Genes and Development, Vol. 13, (Dec 1999), No. 24, pp. 3217-
3230. 

Rabinovich, M.L., Bolobova, A.V. & Vasil’chenko L.G. (2004). Fungal decomposition of 
natural aromatic structures and xenobiotics: a review. Applied Biochemistry and 
Microbiology, Vol. 40, No. 1, pp. 1-17. 

Rajakumar, S., Gaskell, J., Cullen, D, Lobos, S, Karahanian, E. & Vicuña, R. (1996). Lip-Like 
genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with 
no detectable lignin peroxidase activity. Applied and Environmental Microbiology, 
Vol. 62, No. 7 (July 1996), pp. 2660–2663.  

Richards, A., Veses, V. & Gow, N.A.R. (2010). Vacuole dynamics in fungi. Fungal Biology 
Reviews, Vol. 24, pp. 93-105. 

Rüttimann-Johnson, C., Cullen, D. & Lamar, R. (1994). Manganese peroxidases of the white 
rot fungus Phanerochaete sordida. Applied and Environmental Microbiology, Vol. 60, pp. 
599–605. 

Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. 
Biotechnology Advances, Vol. 27, No. 2 (March-April 2009), pp. 185-194. 

Sato, S., Liu, F., Koc, H. & Tien, M. (2007). Expression analysis of extracellular proteins from 
Phanerochaete chrysosporium grown on different liquid and solid substrates. 
Microbiology, Vol. 153, No. Pt 9 (September 2007), pp. 3023-3033.  

Schleif, R. (1992). DNA looping. Annual Review of Biochemistry, Vol. 61, pp. 199-223. 
Shi, J., Chinn, M.S. & Sharma-Shivappa, R.R. (2008). Microbial pretreatment of cotton stalks 

by solid state cultivation of Phanerochaete chrysosporium. Bioresources Technology, Vol. 
99, No. 14 (September 2008), pp 6556-6564.  



 
Selected Works in Bioinformatics 

 

80

Shi, J., Sharma-Shivappa, R.R. & Chinn, M.S. (2009). Microbial pretreatment of cotton stalks 
by submerged cultivation of Phanerochaete chrysosporium. Bioresources Technology,  
Vol. 100, No. 19 (October 2009), pp. 4388-4395. 

Singh, D. & Chen, S. (2008). The white-rot fungus Phanerochaete chrysosporium: conditions for 
the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 
Vol. 81, No. 3 (December 2008), pp. 399-417. 

Singh, P., Sulaiman, O., Hashim, R., Rupani, P.F. & Peng, L.C. (2010). Biopulping of 
lignocellulosic material using different fungal species. Reviews in Environmental 
Science and Biotechnology, Vol. 9, pp. 141-151. 

Smith, T.F. & Waterman, M.S. (1981). Identification of common molecular subsequences. 
Journal of Molecular Biology, Vol. 147, No. 1, pp. 195-197.  

Stepanova, M., Tiazhelova, T., Skoblov, M. & Baranova, A. (2005). A comparative analysis of 
relative occurrence of transcription factor binding sites in vertebrate genomes and 
gene promoter areas Bioinformatics, Vol. 21, No. 9 (May 2005), pp. 1789–1796. 

Stewart, P. & Cullen, D. (1999). Organization and Differential Regulation of a cluster of 
lignin Peroxidase genes from Phanerochaete chrysosporium. Journal of Bacteriology, 
Vol. 181, No. 11 (June 1999), pp. 3427-3432. 

Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity 
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix. Nucleic Acids Research, Vol. 22, No. 22 
(November 1994), pp. 4673-4680. 

Veses, V., Richards, A. & Gow, N.A.R. (2008). Vacuoles and fungal biology. Current Opinion 
in Microbiology, Vol. 11, pp. 503-510.   

Weber, R.W.S. (2002). Vacuoles and the fungal lifestyle. Micologist, Vol. 16. Part 1, pp. 10-20. 
Wei, W. & Yu. X.-D. (2007). Comparative analysis of regulatory motif discovery tools for 

Transcription Factor Binding Sites. Genomics Proteomics Bioinformatics, Vol. 5, No. 2 
(May 2007), pp. 131-142.  

Wittkopp, P.J. (2006). Evolution of cis-regulatory sequence and function in Diptera. Heredity, 
Vol. 97, No. 3 (July 2007), pp. 139-147. 

Wu, J.M. & Zhang, Y.Z. (2010). Gene Expression in Secondary Metabolism and Metabolic 
Switching Phase of Phanerochaete chrysosporium. Applied and Biochemical 
Biotechnology, Vol. 162, No. 7 (November 2010), pp. 1961-1977. 

Wymelenberg, A.V., Gaskell, J., Mozuch, M., Kersten, P., Sabat, G., Martinez, D. & Cullen, D. 
(2009). Transcriptome and Secretome Analyses of Phanerochaete chrysosporium 
Reveal Complex Patterns of Gene Expression.  Applied and Environmental 
Microbiology, Vol. 75, No. 12 (June 2009), pp. 4058–4068.  

Zacchi, L. Morris, I. & Harvey, P.J. (2000). Disordered ultrastructure in lignin-peroxidase-
secreting hyphae of the white-rot fungus. Phanerochaete chrysosporium. Microbiology, 
Vol.146, pp. 759-765. 



5 

Prediction and Experimental Detection  
of Structural and Functional Motifs in 

Intrinsically Unfolded Proteins 

Cesira de Chiara and Annalisa Pastore 
MRC National Institute for Medical Research, The Ridgeway, London, 

UK 

1. Introduction 

Intrinsically unstructured proteins (IUPs) or proteins with intrinsically unstructured regions 
(IURs) have quickly gained increasing interest within the biological community because of 
their significant presence in the human genome and their potential links to major 
pathologies such as cancer, neurodegeneration and diabetes (Tompa, 2005; Tompa & 
Fuxreiter, 2008). The terms IUPs and IURs designate proteins or protein regions intrinsically 
devoid of a well defined tertiary structure. The concept was introduced a few years ago in 
the scientific literature as a brand new idea, which would represent a family of proteins 
thought to have been previously ignored or unappreciated (Dunker et al., 2001; Wright & 
Dyson, 1999). However, as in many other examples in Science, the concept of IUPs is far 
from being new. In the 70s, it was universally accepted that what were known as 
‘biologically active peptides’ had no intrinsic structure, often being too short to have a 
proper hydrophobic core. Peptides would/could however fold in a definite conformation 
upon interaction with a partner/receptor, thus having all the features of modern IUPs 
(Boesch et al., 1978). Hormones and opioid peptides are two among several of the best 
studied examples. 
The concept of intrinsic disorder and/or flexibility has now been extended to proteins and 
has deeply transformed our perception of the importance of protein dynamics as opposed to 
the static picture introduced by years of crystallographic studies. Even more important is 
the fact that accepting the existence of IUPs proposes a unique paradigm in which function 
can be directly linked to structural disorder rather than to a defined structure. 
IUPs have been classified in two broad categories. In the first family, IUP’s function is 
achieved through binding to one or several partner molecule(s) in a structurally adaptive 
process, which enables an exceptional plasticity in cellular responses. These proteins do not 
form a structure by themselves and are functionally inactive in the absence of a partner, but 
structure can be induced upon recognition of another molecule. When bound to a substrate, 
they are able to acquire a structure and become rigid, according to an induced-fit 
mechanism or to what has been recently generalized in the concept of ‘conformational 
fuzziness’ (Wright & Dyson, 2009). Macromolecular association rates have in fact been 
demonstrated to be highly enhanced by a relatively non-specific association enabled by 
flexible recognition segments. Molecular recognition occurring in this way has been 
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described according to the ‘fly-casting’ (Shoemaker et al., 2000) or ‘protein fishing’ (Evans & 
Owen, 2002) mechanisms. Examples of proteins belonging to this family are those bearing 
RNA binding motifs which acquire a structure only upon interaction to RNA. 
In the second family, IUPs work as entropic chains exploiting their ability of fluctuating 
over ensembles of structural states with similar conformational energies. In this way they 
either generate force against structural changes or influence the orientation/localization of 
attached domains (Dunker et al., 2002). According to these properties, they are active in 
their unstructured form and play the role of flexible linkers necessary to allow other 
portions of the protein to move like ‘a dog on a leash’ and ultimately to interact with other 
partners. A classical example of such a case is the IUR, called PEVK, of the muscle protein 
titin (Labeit & Kolmerer, 1995). This region confers some of the passive elastic properties of 
the titin filament, providing the stiffness required in muscle contraction to keep the 
sarcomere in register (Greaser et al., 2000). 
These unique features are exploited in many biological processes thus explaining the 
multiplicity of different functions in which IUPs are involved (Dunker et al., 2002). Protein 
disorder prevails for instance in signaling, regulatory and cancer-associated proteins. The 
functional importance of protein disorder is also underlined by its dominant presence in 
proteins associated with signal transduction, cell-cycle regulation, gene expression and 
chaperone activities (Dunker et al., 2002; Iakoucheva et al., 2002; Tompa & Csermely, 2004; 
Uversky, 2002; Ward et al., 2004b). Because of their susceptibility to degradation, IUPs have 
also been linked to the ubiquitin (Ub)/proteasome pathway (Csizmok et al., 2007). 
In this chapter, we discuss the problems related to the prediction, production and 
characterization of IUPs/IURs. We take as a representative case study ataxin-1, a human 
protein of biological and clinical interest that is related to the neurodegenerative disease 
spinocerebellar ataxia of type-1. Using ataxin-1, we retrace how the application of different 
bioinformatics tools has contributed to shed light on the structure and functions of the 
protein since its first identification. We also provide an update on the physico-chemical 
methods used to translate the sequence information into structural and functional models of 
the protein and its interactome. This hands-on example might provide a valuable paradigm 
of how correct identification of linear motifs and IURs can provide the key for 
understanding protein function. 

2. Prediction methods of IUPs 

While it has become increasingly easy to appreciate the importance of IUPs/IURs, their 
prediction and experimental characterization remain somewhat problematic. Since Romero 
et al. (Romero et al., 1997) indicated for the first time that lack of a defined protein tertiary 
structure is predictable on the sole basis of the primary sequence, several different methods 
have been developed that enable prediction (reviewed in Radivojac P et al. (Radivojac et al., 
2007) (Table 1). They are based on different definitions of IURs and detect different 
indicators such as hydrophobicity, sequence composition, secondary structure content, etc.  
These programs, however, are not always entirely reliable. Most weaknesses arise from the 
intrinsic difference between the conceptual and operational definition of IUP/IUR. As 
mentioned above, conceptually, there are two classes of IUP/IUR. The first does not form a 
structure by itself, but this can be induced by a partner. Proteins belonging to the second 
class can perform their function in three ways: (1) through the newly acquired structure, (2) 
by inducing structural changes in their partners and modulating the function of these 



Prediction and Experimental Detection of Structural  
and Functional Motifs in Intrinsically Unfolded Proteins 

 

83 

partners, or (3) through formation of protein complexes with partners. This class of 
IUP/IUR does not function in its unstructured form, i.e., the unstructured form is inactive. 
The second class performs its cellular function without forming a structure: the 
unstructured form is the functional one.  
 
Software Prediction Based on 

Disopred2 
(http://bioninf.cs.ucl.ac.uk/disopred)
(Ward et al., 2004b) 

Regions lacking ordered 
secondary structure 

Cascaded support vector 
machine classifiers 
trained on PSI-BLAST 
profiles 

PONDR 
(http://www.pondr.com/) 
(Radivojac et al., 2003) 

Non rigid regions from 
random coils to partially 
unstructured regions and 
molten globules 

Local aminoacid 
composition, flexibility, 
hydropathy, etc 

GlobPlot 
(http://globplot.embl.de/) 
(Linding et al., 2003b) 

Regions with high 
propensity for globularity 
based on propensity for 
secondary structure and 
random coil 

Russell/Linding scale of 
disorder 

DisEMBL 
(http://dis.embl.de/) 
(Linding et al., 2003a) 

LOOPS (region without 
secondary structure) 
HOT LOOPS (loops with 
high mobility) 
REMARK465 (regions of 
crystal structures lacking 
of electron density) 

Neural networks trained 
on crystal structures 

IUPred 
(http://iupred.enzim.hu/) 
(Dosztanyi et al., 2005a, 2005b) 

Regions devoid of well-
defined 3D structure 
under native conditions 

Local aminoacid 
composition used to 
estimate inter-residue 
interaction energy 

Table 1. List of predictors of protein disorder used for ataxin-1 in this study. The table, 
which illustrates the features of the different methods, is adapted from Ferron et al. (Ferron 
et al., 2006).  

The operational definition used by bioinformatic software is typically based on the 
likelihood of the protein/peptide forming a structure under certain (often poorly defined) 
cellular environments, with little or no information on how the protein/peptide functions or 
what partner the IUP/IPR may have. Intrinsically unstructured proteins are for instance 
characterized by a low content of bulky hydrophobic amino acids and a high percentage of 
polar and charged amino acids. As a consequence, they do not contain enough residues to 
build a hydrophobic core that is typical of stably folded globular proteins. Another 
symptomatic indication of an IUP is the presence of low complexity motifs, i.e. sequences 
with over-representation of just a few residues (e.g. polyglutamine stretches, arginine-
glycine (RG) repeat observed in RNA binding proteins or arginine-serine (RS) repeats 
observed in splicing factors). Of course, while low complexity sequences are a strong 
indication of disorder, the reverse is not necessarily true, that is, not all disordered proteins 
have low complexity sequences. 
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We can then expect that as these predictions become more robust the more we shall be able 
to distinguish between the different IUPs/IURs and have functional clues. For the time 
being, this software should be handled with care. For instance it is quite important to use 
more than one approach on the same sequence and compare the resulting scores. 

3. Detection of linear functional motifs 

It is difficult to underestimate the importance of the concept of structural motifs or modules 
in the world of globular proteins (Konagurthu & Lesk, 2010; Schaeffer & Daggett, 2010). A 
similar role is taken now by linear motifs in the world of IUPs. Eukaryotic linear motifs 
(ELMs) are short stretches of eukaryotic protein sequences (typically 3-10 amino acids long) 
to which a molecular function is associated. These segments provide regulatory functions 
independently of protein tertiary structure. While also potentially present in stably folded 
proteins, they acquire a particular importance in IUPs because in these they cannot be 
shielded by structure. It is in fact found experimentally that short functional sites, which are 
frequently involved in regulatory processes, must reside in non-structured or non-globular 
regions or, when within globular domains, in flexible highly exposed loops (Gibson, 2009). 
Examples of linear motifs are phosphorylation sites, nuclear localization signals or 
signalling sequences. A useful tool for the prediction of linear motifs is the ELM database 
(http://elm.eu.org/) developed from a collaborative effort between EMBL and University 
of Rome (Diella et al., 2008; Puntervoll et al., 2003). A sequence of interest can be screened 
against this database to quickly suggest the position of ELMs. 

4. When can we be sure that a protein is a IUP? 

Many of us have been confronted with natural or recombinant proteins that, after 
purification, result in being unfolded even when they are expressed in a soluble form. Are 
these bona fide IUPs? It is some times difficult to distinguish between IUPs and orphan 
complex proteins, yet there is a profound difference between the two families. IUPs have no 
intrinsic capability to adopt a definite structure at least in the absence of a partner. Their 
conformational state is also independent of the way they have been purified. On the 
contrary, Orphan complex proteins are able to fold but their tertiary fold is only marginally 
stable even though not being intrinsically devoid of a 3D structure (Sjekloća et al. 2011). This 
is often due to the absence of a partner which stabilizes their fold. These proteins might be 
produced as unfolded proteins, as folded/unfolded mixed populations or as species highly 
prone to aggregation. Their misbehaviour can in principle be reduced or neutralized by 
finding more suitable conditions or less drastic purification protocols (e.g. concentration is 
often a problematic step). The only guidance to distinguish among the two families may be 
sequence analysis coupled to comparison with other homologous. If the motif is observed in 
other proteins where it adopts a stable fold, it is difficult to believe that it is intrinsically 
unfolded. In such a case, we suggest putting more care in protein production and 
attempting to identify the partners able to provide stabilization. A way to solve the 
ambiguity when the protein of interest is purified as an unfolded monomer can be to 
register an NMR spectrum directly on the cell lysate, if proper overexpression can be 
achieved. This circumvents the purification step and ‘shows’ the structural properties of the 
protein independently of human intervention. 
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5. Experimental methods to study IUPs 

How can we study the structure of intrinsically unstructured molecules? The statement 
sounds like an oxymoron in which the two terms contradict each other. The problem closely 
resembles the difficulties encountered in the study of denatured states of ordered proteins. 
It goes without saying that IUPs cannot be crystallized in isolation because of their 
flexibility. Solution studies are therefore more appropriate to characterize their structural 
states. The ultimate goal of these studies cannot, however, be that of obtaining the structure 
but rather to describe the protein as an ensemble of rapidly interconverting alternative 
structures characterized by differing backbone torsion angles.  
Among the biophysical methods able to provide structural and dynamic information, two 
techniques are probably the ones that have given more interesting results over the last few 
years: Nuclear magnetic resonance (NMR) and Small Angle X-ray Scattering (SAXS). 
Despite the disadvantages of the very poor chemical shift dispersion (particularly for proton 
and aliphatic carbon resonances) because of conformational averaging, NMR is particularly 
powerful thanks to its ability of measuring different independent observables. These include 
secondary chemical shifts, residual dipolar couplings (RDC), hydrogen bonds, torsional 
angles and long-range NOE upon spin labelling (for an exhaustive review see Mittag & 
Forman-Kay, 2007). Among them, detection of residual secondary chemical shifts is 
probably the simplest qualitative way to detect complete or partial local disorder of a chain. 
Most of the other NMR observables can be exploited in a more quantitative way: since the 
early implementation of the ensemble-averaged nOe distance restraints (Bonvin & Brunger, 
1996), a variety of restraining algorithms, including simultaneous time and ensemble 
averaging (Fennen et al., 1995), have been developed and have been used to describe native, 
transition, intermediate, and unfolded states (Clore & Schwieters, 2004a, 2004b; Kuszewski 
et al., 1996; Vendruscolo & Paci, 2003; Vendruscolo & Dobson, 2005). A modern approach 
that takes into account protein flexibility is that of imposing penalizing forces if the 
calculated average distances at a given time across an ensemble of simulated molecules (the 
‘replica ensemble’) do not match the experimental ones. It is interesting to note that RDCs 
provide a particularly powerful way to assess protein structures using an absolute reference 
system despite the original scepticism towards applying these measurements for the 
treatment of IUPs and IURs which pose fundamental problems in the way structural 
averaging should be used. To address the problem, new methods based on RDC 
measurements have been developed to provide detailed information on protein dynamics 
also in cases of conformational averaging, for instance based on analytical deconvolution, 
Gaussian axial fluctuation methods and restrained molecular dynamics simulations. Most of 
these methods have, however, been used to assess the dynamics of relatively small 
amplitude methods. Their application to flexible and conformationally interconverting 
molecules such as IUPs and IURs remains to be fully established. 
SAXS, by which it is possible to achieve the measurement of molecular dimensions and a 
description of the overall shape of the ensemble, is, in many ways, complementary to NMR. 
A key advancement to quantitatively characterizing flexible proteins in solution by SAXS 
was achieved with the implementation of the approach known as ensemble optimization 
method (EOM) (Bernado et al., 2007). In this approach, flexibility is taken into account by 
postulating the coexistence of different conformational states for the protein contributing to 
the experimental scattering pattern. The different conformers can then be selected by genetic 
algorithms from a pool containing a large number of randomly generated models covering 
the protein configurational space. The EOM selected models are then analysed by 
quantitative statistical criteria also developed to determine the optimal number of 
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conformers necessary to represent the ensemble. When possible, the quality of the analysis 
is increased by simultaneous fitting of multiple scattering patterns from deletion mutants, a 
procedure which is somewhat equivalent to improving the quality of sequence alignment 
introducing information about sequence homologues. The EOM protocol has now been 
validated by applying it to the study of several examples of completely or partially unfolded 
proteins and on multidomain proteins interconnected by flexible linkers and has shown to 
be a robust and helpful approach to the study of IUPs. 

6. Ataxin-1 as a case study 

To discuss the problems related to the prediction and characterization of IURs we chose as a 
representative case study ataxin-1, a human protein of biological and clinical interest that is 
related to the neurodegenerative disease spinocerebellar ataxia of type-1 (SCA1). This 
hereditary pathology is dominant and a member of a small family of neurodegenerative 
diseases linked to protein aggregation and misfolding, all caused by anomalous expansion 
of polyglutamine (polyQ) tracts in the gene coding region (Orr & Zoghbi, 2007) (Figure 1).  
 

 
Fig. 1. Schematic representation of the protein members of the polyQ disease family. The 
sequence predicted to be intrinsically unfolded according to predictor DisEMBL (Radivojac 
et al., 2003) is indicated by a blue line. The position of polyQ tracts is indicated with 
magenta boxes. The position of other structural and functional domains, as reported by 
SMART (Schultz et al., 1998) and Pfam (Finn et al., 2010) databases, is indicated with 
geometric symbols of different colours. HTT: Huntingtin; ATN1: Atrophin 1; AR: Androgen 
receptor; ATXN1: Ataxin-1; ATXN2: Ataxin-2; ATXN3: Ataxin-3; A1A-vdcc: A1A-voltage 
dependent calcium channel; ATXN7: Ataxin-7; TBP: TATA-box binding protein. 

Other members of the polyQ pathology family are Huntington’s chorea, Machado-Joseph 
disease and other spinocerebellar ataxias. Elongation of polyQ tracts is the result of a gene 
polymorphism where unstable consecutive CAG triplets may become expanded during 
DNA replication. The mutated proteins form intracellular aggregates which are thought to 
be toxic for the cell and lead to cell death according to a gain rather than loss of function 
mechanism. While generally accepted that polyQ expansion is the leading factor in 
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triggering pathology, it has become increasingly clear that protein context is an important 
element that modulates protein behaviour and pathology. Despite best efforts, all the polyQ 
pathologies are currently incurable. A way to develop a specific treatment is through the 
identification of the function(s) of the native proteins. In this endeavour, the support of 
bioinformatics analysis of the protein sequence becomes essential to predict structure and a 
great help in suggesting a function for these proteins. The sequences of the polyQ disease 
families are very different in length and position of the polyQ tract. They are also not 
homologous and share only a rather loose common feature: they all seem to contain large 
IURs which are sometimes interrupted by readily identifiable globular domains. As such, 
they constitute an excellent example to discuss the problems inherent in detecting and 
studying IUPs/IURs. 
In the following sections we shall discuss a detailed analysis of the ataxin-1 primary 
sequence and how this study has suggested working hypotheses which could then be tested 
experimentally using structural and cellular approaches. We discuss the identification of 
two major potential IURs in ataxin-1 which contain short linear motifs important for 
phosphorylation, aggregation and protein-protein interactions that are directly related to 
pathogenesis (Chen et al., 2003; de Chiara et al., 2009; Emamian et al., 2003; Jorgensen et al., 
2009; Klement et al., 1998). We pay particular attention to the prediction and 
characterization of the structural and functional features of the different protein regions and 
to the identification of key ELMs of crucial importance both for the normal and anomalous 
behaviour of the protein. 

6.1 Ataxin-1 domain architecture 
Ataxin-1 is a ca. 98 kDa protein which is well conserved through vertebrates, ubiquitously 
expressed and mainly localised in the cell nucleus (Klement et al., 1998). As with all the 
other members of the polyQ protein family, which it shares a common pathogenic 
mechanism with, ataxin-1 was originally identified by gene mapping (Banfi et al., 1994). In 
its non-expanded form, human ataxin-1 is a protein of 816 amino acids although expansion 
can significantly increase its length (Figure 2). Different predictions of IURs suggest the 
presence of long unstructured regions (Figure 3).  
 

 
Fig. 2. Architecture of non-expanded and expanded ataxin-1. The polyQ tract is shown in 
magenta and the AXH domain in cyan. The positions of the nuclear localization signal 
(NLS) and a phosphorylation site important for protein interactions and for pathology are 
also indicated (de Chiara et al., 2009). 
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Fig. 3. IUR regions of ataxin-1 according to different predictors. From top to bottom: 
Disopred2 (Ward et al., 2004a; Ward et al., 2004b), PONDR (Radivojac et al., 2003), IUPRED 
(Dosztanyi et al., 2005a, 2005b), GlobPlot (Linding et al., 2003b) and DisEMBL (Linding et 
al., 2003a). 
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6.1.1 The N-terminal IUR 

6.1.1.1 The N-terminal IUR according to different IUR predictors 
In addition to the low complexity polyQ tract, there is a long region potentially unfolded 
from the N-terminus up to the AXH domain (567-689) which seems to be the only region of 
the protein that is autonomously folded (Figure 2). According to GlobPlot (Linding et al., 
2003b), for instance, the region of ataxin-1 from the N-terminus to the beginning of the AXH 
domain is predicted as a series of multiple disorder regions. Among these are short low-
complexity sequences (47-64, 88-99, 154-169, 366-377) as defined by SMART (Letunic et al., 
2009; Schultz et al., 1998). Disopred2 (Ward et al., 2004a; Ward et al., 2004b), PONDR 
(Radivojac et al., 2003), DisEMBL (Linding et al., 2003a) and IUPRED (Dosztanyi et al., 
2005a, 2005b) also concordantly predict this region as almost entirely disordered (Figure 3). 
6.1.1.2 The polyQ tract 
The N-terminus of the human protein is characterized by the presence of a highly 
polymorphic almost uninterrupted polyQ stretch which ranges from 4 to ~39 Qs in normal 
population and is expanded to ~40-83 Qs in SCA1-affected individuals (Zoghbi & Orr, 2008). 
Pathology typically develops when the repeat length exceeds a threshold of 35-45 
glutamines (Genis et al., 1995; Jayaraman et al., 2009; Orr et al., 1993). Expansion of this 
region is a feature not shared among other species suggesting an evolutionary gain 
associated only to humans. The polyQ tract of ataxin-1 starts at residue 197. Indeed, the 
structure of polyQ stretches in solution has been shown experimentally both by CD and 
NMR spectroscopy to be a random coil when in a non-aggregated form (Masino et al., 2002). 
This is at variance with predictions by SMART which propose a helical coiled-coil region for 
the same region (amino acids 193-230). The discrepancy should anyway be ascribed by a 
bias in SMART for poly-amino acids. Interestingly, we now know that expansion of the 
polyQ tract in ataxin-1 is a condition necessary but not sufficient for triggering disease: two 
other motifs, a nuclear localization signal (NLS) and phosphorylation of S776, both located 
at the C-terminus and discussed in a session below, have been proved to also be required. 
As for the other polyQ proteins the native function of the polyQ tracts is unknown, although 
their presence has mostly been detected in proteins associated with transcriptional 
regulation activity. Indeed, the transcriptional regulator poly-Q binding protein-1 (PQBP1) 
has been found to bind ataxin-1 in a polyQ length-dependent manner, suggesting that 
PQBP1 and mutant ataxin-1 may act cooperatively to repress transcription and induce cell 
death (Okazawa et al., 2002). Direct evidence to support this hypothesis is now necessary. 
6.1.1.3 Prediction of significant ELMs in the N-terminal IUR 
Although ataxin-1 has been reported as a protein shuttling in and out the nucleus and the 
cytoplasm, there is a large body of evidence showing that the protein is predominantly 
located in the nucleus. Restricting the search for candidate short linear motifs and post-
translational modifications within the N-terminal IUR to those significant for the nuclear 
localization, several ELMs have been predicted by using the ELM resource (Diella et al., 
2008; Puntervoll et al., 2003) (Table 2).  
A plethora of potential phosphorylation sites are predicted by the ELM resource in the N-
terminal IUR of ataxin-1, among which only Ser239 (Vierra-Green et al., 2005) and Ser254 
have been experimentally verified (Dephoure et al., 2008). Phosphorylation of these two 
serine residues supports the prediction by ELM of two candidate Class IV WW domain 
interaction motifs present in the regions 236-241 and 251-256 which mediate 
phosphorylation-dependent interactions. In addition to the WW domain motifs, other 
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ELM Sequence Position Description Experimentally 
Verified 

LIG_14-3-3_1 RRWSAP 773-778 Mode 1 interacting phospho-
motif for 14-3-3 proteins 

Yes 

LIG_14-3-3_3 KAPTLP 
RTASPP 
KAESSR 
HSASEP 

29-34 
260-265 
309-314 
439-444 

Interacting phospho-motif for 
14-3-3 proteins not matching 
Mode 1 and Mode 2 

 

LIG_FHA_1 EGTAWLP 
PVTSAVA 
PHTLTLG 
PGTQPLL 
FVTTALP 

41-47 
154-160 
279-285 
486-492 
523-529 

Phosphothreonine motif 
binding FHA with preference 
for large aliphatic at pT+3 

 

LIG_FHA_2 AGTSVEL 
LSTGLDY 
QATHREA 
PSTLNDK 
GSTDMEA 
FLTKIEP 

63-69 
81-87 
400-406 
408-414 
496-502 
758-764 

Phosphothreonine motif 
binding FHA with preference 
for acidic aminoacid at pT+3 

 

LIG_WW_4 TPGSPP 
ISSSPQ 

236-241 
251-256 

Phosphopeptide motif 
interacting with Class IV WW 
domain 

 

MOD_PKA_1 RRWSAPE 773-779 PKA-type AGC kinase 
phosphorylation site 

Yesa 

MOD_ProDKin_1 TPGSPPP 
ISSSPQN 

236-242 
251-257 

MAPK phosphorylation site 
in higher eucaryotes 

Yesb 
Yesb 

MOD_CK2 RRWSAPE 773-779 CK2 phosphorylation site  
MOD_GSK3_1 ISSSPQNT 

RRWSAPES 
251-258 
773-780 

GSK3 phosphorylation 
recognition site 

Yesb 
 

LIG_ULM_U2AF6
5_1 

RKRRWS 771-776 Pattern in ULMs of SF1 and 
SAP155 which bind to the 
UHM of U2AF65 

Yes 

LIG_USP7_1 PATSR 
AGTSV 
PVTSA 
AVASA 
AESSR 
PYESR 
PSPSD 
ASPST 
PVGST 
PKPSL 

20-24 
63-67 
154-158 
158-162 
310-314 
356-360 
366-370 
406-410 
494-498 
795-799 

Variant of the USP7 NTD 
domain based on the MDM2 
and P53 interactions 

 

MOD_SUMO PKSE 
LKTE 

529-532 
594-597 

Motif recognized for 
modification by SUMO 

 

TRG_NLS_MonoC
ore_2 

TRKRRW 770-775 Monopartite variant of the 
classical basically charged 
NLS. Core version 

Yes 

Table 2. Prediction of relevant functional linear motifs in the N- and C-terminus of human 
ataxin-1 by the ELM database (http://elm.eu.org/) (Diella et al., 2008; Puntervoll et al., 
2003). Among all the predicted phosphorylation sites only the ones which have been 
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confirmed in vivo and are supportive of the prediction of other phosphopeptide motifs have 
been included. aPhosphorylation site and kinase experimentally confirmed in cerebellum 
(Jorgensen et al., 2009). bPhosphorylation site confirmed, kinase not identified (Dephoure et 
al., 2008; Vierra-Green et al., 2005) 

putative phosphorylation-dependent protein-protein interaction motifs are predicted in the 
N-terminus of ataxin-1. Among these are several forkhead-associated FHA domain type-1 
and -2, and adaptor protein 14-3-3 ligand motifs suggesting that the N-terminus of ataxin-1 
may play a significant role in the assembly of the protein interactome. 
6.1.1.4 Self association region (SAR)  
At the cross-point between the N-terminal IUR and the AXH domain, a region of ca 100 aa 
(495-605) was identified in a yeast two hybrid system as responsible for protein self 
association (SAR) in cell (Burright et al., 1997). SAR shares 39 aa with the N-terminus of the 
AXH domain (567-689) which has been shown to be dimeric in solution (Chen et al., 2004; de 
Chiara et al., 2003). Therefore, this region seems to account for dimerization of the full-
length ataxin-1. Interestingly, according to PONDR (VL3 predictor) and IUPRED, both 
based on the analysis of the local aminoacid composition, the full region ~440-700, which 
includes SAR and the AXH domain, is predicted as a potentially folded domain (Figure 3). 

6.1.2 AXH domain 

6.1.2.1 The structure of the ataxin-1 AXH domain 
Soon after gene identification (Banfi et al., 1994), the analysis of the ataxin-1 sequence and 
the prediction of the secondary structure performed from multiple alignment of the protein 
from different species allowed the discovery of a new small putative independently folded 
domain (ca. ~130 aa) (with predicted predominantly beta structure) (de Chiara et al., 2003). 
The domain, successively named AXH (for Ataxin-1 Homology domain), did not show any 
detectable homology with any other known folding units (SMART accession number 
SM00536; http://smart.embl-heidelberg.de/) (Letunic et al., 2009; Schultz et al., 1998). A 
few years later, the homology between the ataxin-1 AXH and a region of an unrelated 
protein, the transcription factor HBP1, was detected (Mushegian et al., 1997). The two 
proteins share ~28% identity and ~54% similarity with the HBP1 AXH domain showing a 
ca. 10 aminoacids insertion loop between secondary structures respect to the ataxin-1 
domain (de Chiara et al., 2003) (Figure 4). 
The structure of ataxin-1 AXH, as solved by X-ray crystallography, consists of a non-
canonical oligonucleotide- and oligosaccharide-binding (OB) fold (Chen et al., 2004; Murzin, 
1993) (Figure 5). The AXH appears as a constitutive asymmetric dimer which crystallizes as 
an asymmetric dimer of dimers. Each monomer displays a common structure in the C-
terminal part (residues 610-685), recognizable as the OB-fold, which superposes with an 
average root mean square deviation of 0.90 ± 0.06 Å on the backbone atoms. Conversely, 
approximately the first 30 N-terminal aminoacids show appreciable main chain differences 
between each of the two monomers in the dimer, with the same stretch of aminoacids 
adopting alternative secondary structures in the two cases. In this respect, the AXH domain 
represents an interesting example of a chameleon protein, which is a protein that adopts 
different folds under different environments. Interestingly, the observed structural 
differences in ataxin-1 are not induced by different experimental conditions or by the 
presence of ligands. Instead, they are present in the context of the same protein. 
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Fig. 4. Sequence alignment of the AXH from ataxin-1 (ATX1), ataxin-1 paralogue BOAT 
(Brother Of ATaxin-1) and HBP1 from different species. The alignment was prepared by 
ClustalX (version 2) (Larkin et al., 2007) and is based exclusively on sequence similarity. The 
secondary structure of the ataxin-1 AXH domain as predicted by Jpred 3 (Cole et al., 2008) is 
shown on the top for reference. 
 

 
Fig. 5. X-ray structure of the AXH domain of ataxin-1 (PDB entry 1OA8) (Chen et al., 2004). 
The monomers forming the dimer of dimers observed in the structure are alternatively 
indicated in dark and light blue. Detailed analysis shows that they are not related by 
symmetry. 

An even bigger surprise was revealed by structure determination of the AXH domain of 
HBP1. Whilst on the pure basis of sequence homology it would have been reasonable to 
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assume that the structure of each of the two domains could be easily modelled from the other 
used as a template, an unexpected result came out when the solution structure of the HBP1 
AXH domain was solved by NMR spectroscopy (de Chiara et al., 2005a) (Figures 6 and 7). 
 

 
Fig. 6. Comparison between the structure of the AXH domains of ataxin-1 (monomer A) 
(left) (PDB entry 1OA8) (Chen et al., 2004) and HBP1 (right) (PDB entry 1V06) (de Chiara et 
al., 2005a). The N-terminal of the two monomers show the same elements of secondary 
structure arranged in a different topology.  
 

 
Fig. 7. Alignment based on structural comparison between the AXH from taxin-1 and HBP1 
(Chen et al., 2004; de Chiara et al., 2005a). SS_ATX1 and SS_HBP1:experimental secondary 
structure of ataxin-1 and HBP1. 
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When comparing the structure of the HBP1 domain, which is monomeric (de Chiara et al., 
2003; de Chiara et al., 2005a), to any of the ataxin-1 X-ray monomers, only the C-terminal 
part, representing the core of the OB-fold, is structurally superposable, while the N-
terminus adopts a different topology, despite maintaining the same secondary structure 
elements along the sequence (Figure 6). Only a structure-based comparison allowed us to 
realign the sequences and to correctly position the HBP1 long-loop insertion, which was 
originally set between beta-3 and beta-4, between helix-1 and beta-3 (Figure 7). These 
findings support the possibility that the AXH motif is intrinsically able to adopt different 
topologies. 
6.1.2.2 The function of the ataxin-1 AXH domain 
Further studies on the role of the OB-fold of the AXH domain have shown that this region is 
designed to mediate interactions both with nucleic acids and proteins. The crystal structure 
of the ataxin-1 AXH allowed us to rationalize previous literature notions on the ability of the 
AXH to bind RNA homopolimers in vitro with the same nucleotide preference as full-length 
ataxin-1 (de Chiara et al., 2003; Yue et al., 2001). In addition to a direct binding to RNA 
through the AXH domain, the protein was found to co-localize with RNA also when the 
AXH domain was deleted, thus suggesting an involvement of other RNA binding proteins 
in the ataxin-1 interactome (de Chiara et al., 2005b). Recent findings on the ability of ataxin-1 
to interact with splicing factors through a short motif localized C-terminally to the AXH 
domain opened the intriguing possibility that the protein may be involved in pre-mRNA 
processing at the level of the splicing machinery (de Chiara et al., 2009; Lim et al., 2008). 
However, no RNA targets have, as yet, been identified and more research is needed to 
address the question of whether the protein may play a role in RNA metabolism and/or 
nuclear RNA export as suggested also by co-localization with the mRNA export factor 
TAP/NXF1 (Irwin et al., 2005). 
As for the ability of the AXH domain to mediate protein-protein interactions, several 
binding partners with transcriptional activity have been identified whose interaction with 
ataxin-1 is abolished when the AXH domain is deleted: the silencing mediator of retinoid 
and thyroid hormone receptors SMRT/SMRTER (Tsai et al., 2004), the repressor Capicua 
(Lam et al., 2006), the transcription factors Sensless/Gfi-1 (Tsuda et al., 2005) and Sp1 (Goold 
et al., 2007). A potential role for ataxin-1 in transcriptional regulation was suggested at a 
very early stage by the homology with HBP1 (Sampson et al., 2001; Tevosian et al., 1997). A 
general read-out assay for repression of transcription (de Chiara et al., 2005b) confirmed that 
the AXH domain represses transcription when tethered to DNA similarly to what was 
observed for full-length ataxin-1 (Tsai et al., 2004). However, cross-linking experiments 
showed that there is no direct binding between DNA and AXH domain indicating that the 
interaction is mediated by other co-transcriptional regulators (de Chiara et al., 2005b), as 
also confirmed experimentally later on (Bolger et al., 2007; Goold et al., 2007; Lam et al., 
2006; Serra et al., 2006; Tsuda et al., 2005). 

6.1.3 The C-terminal IUR 
The region downstream to the AXH domain up to the C-terminal end of the protein (amino 
acids 690-816) represents an example of possible conflict between the results of different 
predictors. Disopred2, PONDR, IUPRED and DisEMBL predict the C-terminus as an almost 
completely disordered region (Figures 3). According to GlobPlot (http://globplot.embl.de), 
which is based on the Russell/Linding scale (Linding et al., 2003b), the region 703-786 is 
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predicted as a potential globular domain. There is also no agreement with the prediction 
from the SMART server which, instead, identifies the AXH as the only folded region in the 
protein (Figures 2). While still awaiting for a systematic experimental validation, we can 
already comment on these results in light of our findings. 
6.1.3.1 Prediction of ELMs in the C-terminal IUR: A three-way molecular switch in  
ataxin-1 C-terminus 
Consistent with the presence of disorder, several linear motifs were predicted in the 
protein C-terminus. Among these three overlapping linear motifs identified downstream 
to AXH were experimentally verified: a nuclear localization signal (NLS) (771-774) 
(Klement et al., 1998), a 14-3-3 binding motif (774-778: key conservation RxxSxP) (Chen et 
al., 2003) and a UHM ligand motif (ULM) (771-776) (de Chiara et al., 2009), present in 
proteins associated with splicing. These motifs represent a three-way molecular switch 
which plays an important role both for the function of the native protein and for 
pathogenesis. In addition to the expansion of the polyQ tract, nuclear localization is a 
strict requirement for the development of the pathology. Expanded ataxin-1 with mutated 
NLS fails to enter the nucleus and does not cause aggregation that is the typical 
phenotypic hallmark of the SCA1 pathology (Klement et al., 1998). Further to polyQ 
expansion and nuclear localization, phosphorylation of S776 has been identified as a 
condition necessary for development of SCA1 (Emamian et al., 2003). Phosphorylation of 
S776 has been confirmed to occur in vivo (Emamian et al., 2003; Jorgensen et al., 2009) and 
is required for recognition of ataxin-1 by the protein 14-3-3, a molecular adaptor which 
modulates, in a phosphorylation-dependent manner, the function of different proteins in 
their specific context (Chen et al., 2003). Mutation of S776 to an alanine in expanded 
ataxin-1, despite not affecting nuclear localization, prevented the development of the 
SCA1 phenotype (Emamian et al., 2003).  
Recently, an UHM ligand motif (ULM) predicted by the ELM server in the C-terminus of the 
ataxin-1 sequence has been experimentally validated and characterized (de Chiara et al., 
2009). The ULM motif was first identified in the splicing factors SF1 and SAP155 and shown 
to bind the UHM domain of U2AF65 (Corsini et al., 2007). Ataxin-1 ULM (771-776) strongly 
overlaps with the 14-3-3 ligand motif (774-778). However, whilst phosphorylation of S776 is 
crucial for recognition by 14-3-3, it only marginally affects the interaction with U2AF65, 
increasing the dissociation constant by only ~3 folds. Being the Kd between ataxin-1 S776-
phosphorylated ULM and 14-3-3 (ζ isoform) two orders of magnitude smaller than U2AF65 
(0.4 M versus 36 M) it was possible to conclude that, when S776 is phosphorylated, 14-3-3 
is able to displace U2AF65. Under these conditions, the 14-3-3-bound expanded ataxin-1 is 
prone to aggregation. The S776A mutation, which hampers the interaction with 14-3-3, still 
allows the interaction with UHM domain of U2AF65 and potentially other splicing factors. 
These interactions, likely because of the extended dimension of the spliceosome complex, 
may play a protective role and prevent aggregation. Our findings allowed us to conclude 
that phosphorylation of S776 provides the switch that regulates binding of ataxin-1 to the 
protein 14-3-3 and components of the spliceosome, and suggests that pathology develops 
when aggregation competes with native interactions (Figure 8). This example also shows 
how the investigation of the native function of the polyQ proteins have provided valuable 
hints for understanding the molecular mechanisms of pathogenesis. 
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Fig. 8. A model of the role played by phosphorylation of S776 in the modulation of 
expanded ataxin-1 aggregation. 

7. Conclusions 

We have discussed here the concept of IUPs and IURs and shown how their detailed 
bioinformatics analysis can assist structural and functional studies using ataxin-1 as a 
paradigmatic example. Ataxin-1, like other members of the polyQ pathology family, is 
mostly composed of IUPs. Very little is still known about this protein despite its 
involvement in human neurodegeneration, yet this knowledge is essential for designing 
specific therapeutic interventions. Identification of both structured (the AXH domain) and 
unstructured linear functional motifs has played a key role in advancing our knowledge in 
the ataxin-1 function in the cell. More advanced information will undoubtedly come from 
experimental analysis of long stretches of the protein if the formidable challenges of their 
recombinant production in a pure and stable form can be circumvented.  It is also evident 
from the example reported here how new approaches in the identification and study of IUPs 
might be highly helpful to advance the field.  
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1. Introduction  

Feature selection is one of active research area in pattern recognition or data mining 
methods (Duda et al., 2001). The importance of feature selection methods becomes 
apparent in the context of rapidly growing amount of data collected in contemporary 
databases (Liu & Motoda, 2008). 
Feature subset selection procedures are aimed at neglecting as large as possible number of 
such features (measurements) which are irrelevant or redundant for a given problem. The 
feature subset resulting from feature selection procedure should allow to build a model on 
the base of available learning data sets that generalizes better to new (unseen) data. For the 
purpose of designing classification or prediction models, the feature subset selection 
procedures are expected to produce higher classification or prediction accuracy.  
Feature selection problem is particularly important and challenging in the case when the 
number of objects represented in a given database is low in comparison to the number of 
features which have been used to characterise these objects. Such situation appears typically 
in exploration of genomic data sets where the number of features can be thousands of times 
greater than the number of objects. 
Here we are considering the relaxed linear separability (RLS) method of feature subset 
selection (Bobrowski & Łukaszuk, 2009). Such approach to feature selection problem refers 
to the concept of linear separability of the learning sets (Bobrowski, 2008). The term 
“relaxation” means here deterioration of the linear separability due to the gradual neglect of 
selected features. The considered approach to feature selection is based on repetitive 
minimization of the convex and piecewise-linear (CPL) criterion functions. These CPL 
criterion functions, which have origins in the theory of neural networks, include the cost of 
various features (Bobrowski, 2005). Increasing the cost of individual features makes these 
features falling out of the feature subspace. Quality the reduced feature subspaces is 
assessed by the accuracy of the CPL optimal classifiers built in this subspace. 
The article contains a new theoretical and experimental results related to the RLS method of 
feature subset selection. The experimental results have been achieved through the analysis, 
inter alia, two sets of genetic data. 
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2. Linear separability of two learning sets 

Suppose that m objects Oj described in the database are represented by feature vectors 
xj[n] = [xj1,...,xjn]T (j = 1,…,m). The feature vectors xj[n] can be treated as points in the n-
dimensional feature space F[n] (xj[n]  F[n]). The component xji of the vector xj[n] is the 
numerical value of the i-th feature xi of the object Oj. For example, in the case of clinical 
database, components xji can be the numerical results of the i-th diagnostic examinations of a 
given patient Oj. 
Consider two learning sets G+ and G- built from n-dimensional feature vectors xj[n]. The 
positive set G+ contains m+ feature vectors xj[n] and the negative set G- contains m- vectors xj[n]: 

 G+ = {xj[n]: j  J+}     and       G- = { xj[n]: j  J-} (1) 

where J+ and J- are disjoined sets (J+  J- = ) of indices j. 
The positive set G+ usually contains vectors xj[n] of only one category. For example, the set 
G+ may contain feature vectors xj[n] representing patients with cancer and set G- may 
represent patients without cancer. 
Definition 1: The sets G+ and G- (1) are linearly separable, if and only if there exists such a 
weight vector w[n] = [w1,...,wn]T (w[n]Rn) and threshold  (R), that all the below 
inequalities are fulfilled: 
 

( w[n],  ) (xj[n]  G+) w[n]Txj[n]   
                 and (xj[n]  G-) w[n]Txj[n]    (2) 

 

The parameters w[n] and  define the separating hyperplane H(w[n],) in the feature space 
F[n] (x[n]  F[n]): 

 H(w[n],) = {x[n]: w[n]Tx[n] = } (3) 

If the relations (2) are fulfilled, then all the elements xj[n] of the set G+ are located on the 
positive side of the hyperplane H(w[n],) (3) and all the elements of the set G- are located on 
the negative side of this hyperplane. 
 

 
Fig. 1. An example of linearly separable sets G+ (denoted by ○) and G- (denoted by •) in the 
two-dimensional feature space F[2], where m+ = 8 and m- = 6 
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Lemma 1: Such sets G+ and G- (1) which are linearly separable (2) in the feature space F[n], are 
also linearly separable in any greater feature space F[n], where F[n]  F[n]. 
The proof of the Lemma 1 is self-evident. The Lemma 1 shows, inter alia, that for any constant 
c the sets G+ = {xj[n]: xji  c} and G- ={xj[n]: xji  c} are linearly separable in each feature space 
F[n]. 
Lemma 2: The sets G+ and G- (1) constructed of linearly independent feature vectors xj[n] are 
always linearly separable (2) in the feature space F[n]. 
The Lemma 2 can be proved by using arguments related to the construction of bases in the 
feature space F[n] (Bobrowski, 2005). A base in the feature space F[n] can be created by any n 
feature vectors xj[n] which are linearly independent. Such n vectors xj[n] can be separated by 
the hyperplane H(w[n],) (3) for any subsets G+ and G- (1). 
It can be seen that the linear separability (2) can be formulated equivalently to (2) as 
(Bobrowski, 2005): 
 

( v[n+1])  ( yj[n+1]  G+)    v[n+1]Tyj[n+1]    1 
         and   ( yj[n+1]  G-)    v[n+1]Tyj[n+1]   -1 (4) 

 

where yj[n+1] are the augmented feature vectors, and v[n+1] is the augmented weight vector 
(Duda et al., 2001): 

 (j {1,…,m}) yj[n+1] = [xj[n]T, 1]T and v[n+1] = [w[n]T, -]T  (5) 
 

The inequalities (4) are used in the definition of the convex and piecewise-linear (CPL) 
penalty functions φj+(v[n+1]) and φj-(v[n+1]). 

3. Convex and piecewise linear (CPL) criterion functions 

Let us define the convex and piecewise-linear penalty functions φj+(v[n+1]) and φj-(v[n+1]) 
using the augmented feature vectors yj[n+1] (5), and the weight vector v[n+1] (Bobrowski, 
2005): 
 

    (yj[n+1]  G+)  φj+ (v[n+1]) =  1 - v[n+1]Tyj[n+1] if v[n+1]Tyj[n+1]  < 1 (6) 0 if v[n+1]Tyj[n+1]   1
 
and 
 

    (yj[n+1]  G-)  φj- (v[n+1]) = 1 + v[n+1]Tyj[n+1] if v[n+1]Tyj[n+1]  > -1 (7) 0 if v[n+1]Tyj[n+1]  ≤ -1
 
The penalty function φj+(v[n+1]) is equal to zero if and only if the vector 
 yj[n+1] (yj[n+1]  G+) is situated on the positive side of the hyperplane H(v[n+1]) (3) and is not 
too near to it (Fig. 2). Similarly, φj-(v[n+1]) is equal to zero if the vector yj[n+1] (yj[n+1]  G-) is 
situated on the negative side of the hyperplane H(v[n+1]) and is not too near to it  
(Fig. 3). 
The perceptron criterion function (v[n+1]) is defined on the sets G+ and G- (1) as the 
weighted sum of the penalty functions φj+(v[n+1]) and φj-(v[n+1]) (Bobrowski, 2005): 
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Fig. 2. The positive penalty function φj+(v[n+1]) (6).  

 

 
Fig. 3. The negative penalty function φj-(v[n+1]) (7). 

 

(v[n+1]) =  j φj+(v[n+1]) +  j φj-(v[n+1]) 
                                                                   j J+                                      j J-

(8)

where nonnegative parameters j determine prices of particular feature vectors xj[n]. 
We are interested in the finding minimum (vk*[n+1]) of the criterion function (v[n+1]): 

 (v[n+1]) (v[n+1])  (vk*[n+1]) = * (9) 

It has been proved that the minimal value * is equal to zero (* = 0) if and only if the sets 
G+ and G- (1) are linearly separable (4) (Bobrowski, 2005). 

 (* = 0)  (G+ and G- are linearly separable (4)) (10) 
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A modified CPL criterion function (v[n+1]) which includes additional penalty functions 
i(v[n+1]) and the costs i (i  0) related to particular features xi has been introduced in order 
of the feature selection (Bobrowski, 2005): 
 

  (i  {1,...,n})  i(v[n+1]) = |wi| = - ei[n+1]Tv[n+1]   if ei[n+1]Tv[n+1]  < 0         (11)   ei[n+1]Tv[n+1]   if ei[n+1]Tv[n+1]   0
 

and 

(v[n+1]) = (v[n+1]) +   ii(v[n+1]) 
                                                                                                                          i  I

(12)

where  (  0) is the cost level, and I = {1,……,n}. 
Let us relate the hyperplane hj+[n+1] in the parameter space Rn+1 to each augmented feature 
vector yj[n+1] (5) from the set G+ (1), and the hyperplane hj-[n+1] to each element yj[n+1] (5) 
of the set G-. 

(j  J+) hj+[n+1] = {v[n+1]: yj[n+1]Tv[n+1] = 1} 

and 

(j  J-) hj-[n+1] = {v[n+1]: yj[n+1]Tv[n+1] = -1} 

(13)

The first n unit vectors ei[n+1] = [0,...,0,1,0,...,0]T (i = 1,...,n) without the vector  
en+1[n+1] = [0,…,0,1]T are used in defining hyperplanes hi0[n+1] in the augmented parameter 
space Rn+1 (5): 

  (i  {1,…,n})  hi0[n+1] = {v[n+1]: ei[n+1]Tv = 0}= {v[n+1]: vi = 0} (14) 

The hyperplanes hj+[n+1], hj-[n+1] and hi0[n+1] divide the parameter space Rn+1 (5) in the 
disjoined regions Rl[n+1]. Each region Rl[n+1] is a convex polyhedron in the parameter 
space with number of vertices vk[n+1]. The CPL criterion function Ψ(v[n+1]) (12) is linear 
inside each region Rl[n+1]. It has been shown based on the theory of linear programming 
that the minimum of the CPL criterion function Ψ(v[n+1]) (13) can be found in one of 
vertices vk[n+1] of some region Rl[n+1] (Bobrowski, 2005). Each vertex vk[n+1] in the 
parameter space Rn+1 is the intersection point of at lest (n + 1) hyperplanes hj+[n+1], hj-[n+1] 
or hi0[n+1]. The below equations are fulfilled in each vertex vk[n+1]: 

(j  Jk+) yj[n+1]Tvk[n+1] = 1, and 
 (j  Jk-) yj[n+1]Tvk[n+1] = -1, and 

  (i  Ik0) ei[n+1]Tvk[n+1] = 0        (15) 

where Jk+and Jk- are the sets of indices j such hyperplanes hj+[n+1], hj-[n+1] (13) that pass 
through the vertex vk[n+1], Ik0 is the set of indices i such hyperplanes hi0[n+1] (14) that pass 
through the vertex vk[n+1]. 
The above equations can be given in the matrix form: 

 Bk[n+1] vk[n+1] = k[n+1] (16) 

where Bk[n+1] is a non-singular matrix (basis) with the rows constituted by the linearly 
independent vectors yj[n+1] (j  Jk+ Jk-) or the unit vectors ei[n+1] (i  Ik0), and k[n+1] is 
the margin vector with components equal to 1, -1 or 0 according to (15). 
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Remark 1: The number n1 of the independent vectors yj[n+1] in the matrix Bk[n+1] (16) can be 
not greater than the rank r of the data set G+  G- (1). So, the number n0 of the unit vectors 
ei[n+1] (i  Ik0) (15) in the basis Bk[n+1] (16) is not less than n – r (n0  n – r ). 
The vertex vk[n+1] can be computed by using the basis Bk[n+1] and the margin vector 
k[n+1] (16): 

 vk[n+1] = Bk[n+1]-1 k[n+1] (17) 

The criterion function Ψ(v[n+1]) (12), similarly to the function (v[n+1]) (8) is convex and 
piecewise-linear (CPL). The minimum of this function is located in one of the vertices 
vk[n+1] (17): 

 (vk^[n+1]) (v[n+1]) (v[n+1])  (vk^[n+1]) = Ψ^ (18) 

The basis exchange algorithms allow to find efficiently the optimal vertex vk^[n+1] 
constituting the minimum of the CPL function Ψ(v[n+1]) (12), even in the case of large, 
multidimentional data sets G+ and G- (1) (Bobrowski, 1991). 
Remark 2: Such components wki of the vertex vk[n+1] = [wk[n]T,-k]T = [wk1,...,wkn,-k]T (5) 
which are related to the unit vectors ei[n+1] (iIk0) in the basis Bk[n+1] (16) are equal to zero 
(wki = 0) (15). 
The n0 features xi (i  Ik0) (15) with the weights wi equal to zero in the optimal vertex 
vk^[n+1] (18) can be reduced without changing the separating hyperplane H(wk^[n+1],k^) 
(4). The following rule of feature reduction has been proposed on this base: 

  (i  Ik0) ei[n+1]Tvk^[n+1] = 0  wi = 0  the feature xi is reduced (19) 

Remark 3: A sufficiently large increase of the cost level  (  0) in the criterion function 
(v[n+1]) (12) results in an increase of the number n0 of unit vectors ei[n+1] in the basis 
Bk^[n+1] (16) linked to the optimal vertex vk^[n+1] (18) (Bobrowski, 2005). 
An arbitrary number n0 of features xi can be omitted and the feature space F[n] can be 
reduced to the subspace Fk^[n - n0] by using of adequate value k of the parameter  in the 
criterion function (v[n +1]) (12). For example, the value  = 0 means that the optimal 
vertex vk^[n +1] (18) constitutes the minimum of the perceptron criterion function (v[n+1]) 
(8) defined in the full feature space F[n]. On the other hand, sufficiently large value of the 
parameter  results in the optimal vertex vk^[n+1] (18) equal to zero (vk^[n+1] = 0). Such 
solution is not constructive, because it means that all the features xi have been reduced (19) 
and the separating hyperplane H(w[n],) (3) cannot be defined. 
For a given parameter value  = k (12) the optimal vertex vk^[n+1] (18) is determined 
unambiguously as the minimum (18) of the convex and piecewise linear function  
(v[n+1]) (12). This vertex is characterized by the subset of such n - n0 features xi which are 
not related to the unit vectors ei[n +1] (iIk0) in the basis Bk^[n +1] (16) related to the optimal 
vertex vk^[n+1] (18). The feature subspace Fk^[nk] = Fk^[n - n0] can be also determined by 
such n - n0 features xi. Quality of the feature subspace Fk^[nk] can be determined on the basis 
of the quality of the optimal linear classifier designed in this subspace of dimensionality nk. 
The optimal feature subspace Fk*[nk] can be identified as one that enables create the best 
linear classifier. The RLS method of feature subset selection is based on this scheme 
(Bobrowski, 2008; Bobrowski & Łukaszuk, 2009). 
Comparing our approach with the approach based on the least-squares criterion, we can 
conclude that the discriminant function based on the least-squares criterion can be linked to 
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the Euclidean distance L2, whereas our method based on the convex and piece-wise linear 
criterion function (CPL) can be linked to the L1 norm distance function. 

4. Characteristics of the optimal vertices in the case of linear separabilty  

Let us consider the case of long vectors in the exploratory data analysis. In this case, the 
dimensionality n of the feature vectors xj[n] is much greater than the number m (n  m) of 
these vectors (j = 1,…, m). We may expect in this case that the vectors xj[n] are linearly 
independent (Duda et al., 2001). In accordance with the Lemma 2, the arbitrary sets G+ and G- 

(1) of linearly independent vectors xj[n] are linearly separable (6). The minimal value * (9) 
of the criterion function (v[n+1]) (8) defined on linearly separable sets G+ and G- (1) is 
always equal to zero (* = 0) (Bobrowski,2005). The minimum (vk*[n+1]) (9) of the function 
(v[n+1]) (8) can be located in the optimal vertex vk*[n+1] (9), where the below equations 
hold (15): 

(j  Jk+) vk*[n]Tyj[n] = 1 
 and (j  Jk-) vk*[n]Tyj[n] = -1 (20) 

 

where n = n - n0 is the dimensionality of the reduced feature vectors yj[n] obtained from 
yj[n+1] (5) after neglecting n0 features xi related to the set Ik0 (15) and vk*[n] is the reduced 
vertex obtained from vk*[n+1] (9) by neglecting n0 components wi equal to zero (wi = 0). 
The vectors yj[n] belong to the reduced feature subspace Fk[n] (yj[n] Fk[n]). We can 
remark that if the learning sets G+[n] and G-[n] constituted from the vectors yj[n] are 
linearly separable (4) in a given feature subspace Fk[n], there may be more than one optimal 
vertex vk*[n] creating the minimum (9) of the function k(v[n]) (8) (k(vk*[n]) = 0). In this 
case, each optimal vertex vk*[n] linearly separates (4) the sets G+[n] and G- [n] (Bobrowski, 
2005): 

 (yj[n]  G+[n]) vk*[n]Tyj[n]  1 
 and (yj[n]  G-[n]) vk*[n]T yj[n]  -1 (21) 

 

Moreover, in the case of long vectors there may exist many such feature subspaces Fk[n] of 
a given feature space F[n] (Fk[n]F[n]) which can assure the linear separability (21). 
Therefore, a question arises which of the vertices vk*[n] constituting the minimum (9) of the 
perceptron function (v[n+1]) (8) is the best one. 
The answer for a such question can be given on the basis of minimization of the modified 
criterion function (v[n+1]) (12). In contrary to the perceptron criterion function 
(v[n+1]) (8) the modified criterion function (v[n+1]) (12) has only one optimal vertex 
vk^[n+1] (16). The vertex vk^[n+1] (16) which constitutes minimum (18) of the function 
(v[n+1]) (12) is unambiguously determined and can be treated as the optimal one. 
It can be proved that the modified criterion function (v[n+1]) (12) with a sufficiently small 
cost level  (  0), has the minimal value (18) in the same vertex vk*[n+1] (9) as the 
perceptron criterion function (v[n+1]) (8) (Bobrowski, 2005): 

 ( max) ( (0, max)) (v[n+1]) (v[n+1])  (vk*[n+1]) (22) 
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In other words, the replacement of the perceptron criterion function (v[n+1]) (8) by the 
modified criterion function (v[n+1]) (12) does not necessarily mean changing the position 
of the minimum. 
The modified criterion function (v[n+1]) (12) can be expressed in the following manner 
for such points v[n+1] which separate linearly (4) the sets G+ and G- (1): 

 (v[n+1]) =   ii(v[n+1]) =   i|vki| (23) 
                  i  I                      i  I 
Therefore, the minimization of the criterion function (v[n+1]) (12) can be replaced by the 
minimization of the function (v[n+1]) (23) under the condition that the point v[n+1] 
linearly separates (4) the sets G+ and G- (1). 
Remark 5: If the sets G+ and G- (1) are linearly separable, then the vertex vk*[n+1] constituting 
the minimum of the function (v[n+1]) (23) with equal feature costs i has the lowest L1 
norm vk*[n+1]||L1 = i |vki| among all such vectors v[n+1] which linearly separate (4) 
these sets. 
The Remark 5 points out a possible similarity between the CPL solution vk*[n+1] (22) and the 
optimal vector v*[n+1] obtained in the Support Vector Machines (SVM) approach (Vapnik, 
1998). But the use of the CPL function (v[n+1]) (12) also allows obtain other types of 
solutions vk*[n+1] (22) by another specification of feature costs i and the cost level  
parameters. The modified criterion function (v[n+1]) (12) gives possibility to introduce 
different feature costs i (i  0) related to particular features xi. As a result,  
the outcome of feature subset selection process can be influenced by the feature costs  
i (12). 

5. Relaxed linear separability (RLS) approach to feature selection 

The initial feature space F[n] (xj[n]F[n]) is composed of the all n features xi from a given set 
{x1,… xn}. Feature reduction rule (19) results in appearance of the feature subspaces Fk[nk] 
(Fk[nk]  F[n] and nk  n). 
Successive increase of the value of the cost level  in the criterion function (v[n+1]) (12) 
allows to reduce (19) additional features xi and, as a result, allows generate the descended 
sequence of feature subspaces Fk[nk]: 

 F[n]  F1[n1]  F2[n2] …  Fk[nk], where nk  nk + 1 (24) 

The sequence (24) of the feature subspaces Fk[nk] is generated in a deterministic manner on 
the basis data sets G+ and G- (1) in accordance with the relaxed linear separability (RLS) 
method (Bobrowski & Łukaszuk, 2009). Each step Fk[nk]  Fk+1[nk+1] is realized by an 
adequate increase k  k+1 = k + k (where k > 0) of the cost level  in the criterion 
function (w[n],) (12).  
One of the problems in applying the RLS method is to assess the quality characteristics of 
successive subspaces Fk[nk] (24). In this approach, a quality of a given subspace Fk[nk] is 
evaluated on the basis of the optimal linear classifier designed in this subspace. The better 
optimal linear classifier means the better feature subspace Fk[nk]. 
The feature subspace Fk[nk] can be obtained from the initial feature space F[n] by reducing 
the n - nk features xi. Such reduction can be based on the optimal vertex vk^[n+1] (18) with 
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the related basis Bk^[n+1] (16). The optimal vertex vk^[n+1] (18) appoints the minimum of 
the criterion function (v[n+1]) (12) with the adequate value k of the cost level . 
Definition 2: The reduced feature vectors yj[nk] (yj[nk]Fk[nk]) are obtained from the feature 
vectors yj[n+1] = [xj[n]T,1]T (5) after neglecting n - nk features xi related to the set Ik0 (15) of 
the optimal vertex vk^[n+1] (18). The reduced vertex (parameter vector) v^[nk]=[w^[nk-1]T,-^]T 
(5) and vk^[nk] is obtained from the optimal vertex vk^[n+1] (18) by neglecting of these n - nk 
components wi, which are equal to zero (wi = 0). 
The reduced parameter vector v[nk] = [w[nk-1]T,-]T (5) defines the linear classifier LC(v[nk]) 
in the feature subspace Fk[nk]. The linear classifier LC(v[nk]) can be characterized by the 
following decision rule: 

if v[nk]T y[nk]  0, then y[nk] is allocated to the category + 

 if v[nk]T y[nk]  0, then y[nk] is allocated to the category - (25) 

where y[nk]  Fk[nk], and the category (class) + is represented by elements xj[n] of the 
learning set G+ (1) and the category - is represented by elements of the set G-. 
Definition 3: The CPL optimal linear classifier LC(v*[nk]) is defined in the feature subspace 
Fk[nk] by a reduced parameter vector v*[nk] that constitutes the minimum * = k(v*[nk]) (9) 
of the perceptron criterion function k(v[nk]) (8). 
The perceptron criterion function k(v[nk]) is defined (8) on reduced feature vectors yj[nk] 
(yj[nk]Fk[nk]) that belong to the reduced learning set G+[nk] or G-[nk] (1). 

 G+[nk] = {yj[nk]: j  J+} and G-[nk] = {yj[nk]: j  J-} (26) 

Remark 6: The minimal value k* of the criterion function k(v[nk]) (8) on reduced feature 
vectors yj[nk] is equal to zero (k* = 0 ) if and only if the sets G+[nk] and G-[nk] are linearly 
separable (4) in the feature subspace Fk[nk] (similarly as (10)) (Bobrowski, 2005). 
It has been proved that, if the learning sets G+[nk] and G-[nk] (26) are linearly separable (4), 
then the decision rule (25) based on the optimal vector vk*[nk] (9) allocates correctly all 
elements yj[nk] of these learning sets (Bobrowski, 2005). It means that (21): 

(yj[nk]  G+[nk]) v*[nk]Tyj[nk]  0, and  
  (yj[nk]  G-[nk]) v*[nk]Tyj[nk]  0            (27) 

If the sets G+[nk] and G-[nk] (26) are not linearly separable (4), then not all but only a majority 
of the vectors yj[nk] fulfil the above inequalities. 
According to the considerations of the previous paragraph, if the learning sets  
G+[nk] and G-[nk] (26) are linearly separable (4), then there is more than one vertex vi*[nk] 
forming a minimum of the function k(v[nk]) (8). To avoid such ambiguity, the criterion 
function k(v[nk]) (8) can be replaced by the modified criterion function k(v[nk]) (12) with 
the small value (22) of the parameter . 

6. Evaluation of linear classifiers 

The quality of the linear classifier LC(v*[nk]) (25) can be evaluated by using the error 
estimator (apparent error rate) ea(v*[nk]) as the fraction of wrongly classified elements yj[nk] of 
the learning sets G+[nk] and G-[nk] (26): 
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 ea(v*[nk]) = me(v*[nk]) / m (28) 

where m is the number of all elements yj[nk] of the learning sets G+[nk] and G-[nk] (26) xj[n], 
and me(v*[nk]) is the number of elements yj[nk] wrongly allocated by the rule (25). 
The parameters v*[nk] of the linear classifier LC(v*[nk]) (25) are estimated from the learning 
sets G+[nk] and G-[nk] (26) through minimization of the perceptron criterion function 
k(v[nk]) (8) determined on elements yj[nk] of these sets. It is known that if the same data 
yj[nk] is used for classifier designing and for classifier evaluation, then the evaluation results 
are too optimistic (biased). The error rate (28) evaluated on the elements yj[nk] of the learning 
sets is called the apparent error (AE). For example, if the learning sets G+[nk] and G-[nk] (26) 
are linearly separable (4), then the relation (27) holds and, as a result, the apparent error (28) 
evaluated on elements yj[nk] is equal to zero (ea(v*[nk]) = 0). But it is observed in practice 
that the error rate of the classifier (25) evaluated on new vectors y[nk] is usually greater than 
zero. 
For the purpose of the classifiers bias reducing, the cross validation procedures are applied 
(Lachenbruch, 1975). The term p-fold cross validation means that the learning sets G+[nk] and 
G-[nk] (26) have been divided into p parts Gi, where i = 1,…,p (for example p = 10). The 
vectors yj[nk] contained in p – 1 parts Gi are used for definition of the criterion function 
k(v[nk]) (8) and computing of the parameters v*[nk]. The remaining vectors yj[nk] are used 
as the test set (one part Gi) for computing (evaluation) the error rate e(v*[nk]) (28). Such 
evaluation is repeated p times, and each time different part Gi is used as the test set. The 
cross valid1ation procedure allows to use different vectors yj[nk] (1) for the classifier (25) 
designing and evaluation (28) and as a result, to reduce the bias of the error rate estimation 
(28). The error rate (28) estimated during the cross validation procedure will be called the 
cross-validation error (CVE). 
The CVE error rate eCVE(v*[nk]) (28) of the linear classifier (25) is used in the relaxed linear 
separability (RLS) method as a basic criterion in evaluation of particular feature subspaces 
Fk[nk] in the sequence (24) (Bobrowski & Łukaszuk, 2009). Feature subspace Fk[nk] that is 
linked to the linear classifier LC(v*[nk]) (25) with the lowest CVE error rate eCVE(v*[nk]) can be 
considered as the optimal one in accordance with the RLS method of feature selection. 

7. Toy example 

The data set used in the experiment was generated by the authors. In the two-dimensional 
space seven points were selected. Four of them were assigned to the positive set G+, three to 
the negative set G-. The allocation of points to the sets G+ and G- were made in a way that the 
linear separability of sets was preserved. After that each point was extended to 10 
dimensions. The values the remaining coordinates were drawn from the distribution N(0,1). 
Table 1 contains the complete data set. Features x2 and x7 constitute the coordinates of points 
in the initial two-dimensional space.  
Previously described the RLS method was applied to the data set presented in Table 1. Table 
2 shows a sequence of feature subsets studied by the method and values of the apparent error 
(28) and the cross-validation error obtained in particular subsets of features. The best subset of 
features designated by the method is a subset Fk[2] = {x7, x2}. It is characterized by the lowest 
value of the cross-validation error. 
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 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 subset 
x1[10] 0,04 -0,20 0,66 0,83 0,12 -0,06 2,70 -0,37 0,04 -0,43 G+ 
x2[10] -1,47 0,70 1,16 -0,54 -0,15 -0,47 1,80 0,24 0,12 0,15 G+ 
x3[10] 0,34 1,10 0,27 0,22 2,45 1,19 1,30 0,45 -1,06 -1,25 G+ 
x4[10] -1,44 2,60 1,23 -1,86 -0,31 1,26 -0,30 0,34 0,19 0,14 G+ 
x4[10] -0,48 -0,80 -0,55 -0,77 -0,13 0,41 1,10 -0,13 -0,83 -0,97 G- 
x6[10] 0,54 0,20 -0,53 0,90 -0,25 0,54 0,30 -0,34 -0,60 0,70 G- 
x7[10] -0,06 1,20 1,65 -1,77 0,34 1,41 -0,80 -0,65 0,98 -0,27 G- 

Table 1. Feature vectors xj[10] constituting the sets G+ and G- 
 

Subset of features AE CVE
Fk[5] = {x7, x2, x1, x8, x3} 0 0,28571

Fk[4] = {x7, x2, x8, x3} 0 0,14286
Fk[3] = {x7, x2, x3} 0 0,14286

Fk[2] = {x7, x2} 0 0
Fk[1] = {x7} 0,2619 0,28571

Table 2. Subsets of features evaluated by the RLS method, apparent error rate (AE) and cross-
validation error rate (CVE) obtained in particular subsets of features 
 

 
Fig. 4. Points in the feature space selected by the RLS method, hyperplane separated points 
falling within the sets G+ (denoted by circles) and G- (denoted by squares) 

The RLS method in addition to the designation of the best subset of features has also 
determined the hyperplane separating objects from the sets G+ and G-. 

 H(w[2],) = {x[2]: 1,0204 x7 + 1,0884 x2 = 1,5238} (29) 
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8. Experiment on synthetic data 

The data set used in the experiment contained 1000 objects, each described by 100 features. 
Data were drawn from a multivariate normal distribution. The values of each feature had a 
mean equal to 0 and standard deviation equal to 1. All the features were independent of 
each other (diagonal covariance matrix). The objects were divided into two disjoined subsets 
G+ and G- (1) in accordance with the values of the following linear combination: 

 3x4+4x10-7x17+2x28-6x36+3x41+3x58-8x63+x75-x92+5 (30) 

Objects corresponded to the value of expression (30) greater than 0 were assigned to subset 
G+. Objects corresponded to the value of expression (30) less than 0 were assigned to subset 
G-. The result was two linearly separable subsets G+ and G- (1) containing 630 and 370 
objects. 
The RLS method of feature selection was applied in analysis of the so-prepared synthetic 
data. The expected result was the preference by the method the subset of features used in 
the expression (30). 
Figure 4 shows the apparent error (AE) and cross-validation error (CVE) values in the various 
tested features subspaces generated by the RLS method. Each subspace larger than 10 
features ships with all 10 features used in the expression (30). Subspace of size 10 consists 
only of the features used in the expression (30). 
 

 
 
 

 
 
 
 

Fig. 5. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the synthetic data set 
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9. Experiment on the Leukemia and the Breast cancer data sets 

The Leukemia (Golub et al., 1999) data set contains expression levels of 7129 genes taken over 72 
samples. Labels of objects indicate which of two variants of leukemia is present in the sample: 
acute myeloid (AML, 25 samples), or acute lymphoblastic leukemias (ALL, 47 samples).  
The Breast cancer (van’t Veer et al., 2002) data set describes the patients tested for the presence 
of breast cancer. The data contains 97 patient samples, 46 of which are from patients who had 
developed distance metastases within 5 years (labelled as “relapse”), the rest 51 samples are 
from patients who remained healthy from the disease after their initial diagnosis for interval of 
at least 5 years (labelled as “non-relapse”). The number of genes is 24481. 
 

 
Fig. 6. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the Leukemia data set 
 

feature name Fk[7] 
weights wi 

Fk[3] 
weights wi 

attribute4951 -0,99614 -1,71845 
attribute1882 -0,73666 -11,6251 
attribute3847 -0,55316 - 
attribute6169 -0,47317 - 
attribute4973 0,41573 - 
attribute6539 -0,25898 - 
attribute1779 -0,1519 -1,69028 
threshold  -0,55316 2,53742 

Table 3. Features xi constituting the optimal subspace Fk[7] characterised by the lowest cross-
validation error (CVE) and features xi constituting the lowest subspace Fk[3] with apparent 
error (AE) equal to 0 of the Leukemia data set 
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Original data sets come with training and test samples that were drawn from different 
conditions. Here we combine them together for the purpose of cross validation. Data have 
also been standardized before experiment. 
 

 
Fig. 7. The apparent error (AE) and the cross-validation error (CVE) in different feature 
subspaces Fk[nk] of the Breast cancer data set 
 

feature name Fk[14]
weights wi

Fk[11]
weights wi

Contig32002_RC 0,81467 1,89334
NM_000127 0,76305 2,67913
Contig412_RC -0,71647 -
D86979 0,65172 -
Contig38438_RC -0,63018 -1,58491
NM_016153 0,62345 1,81026
NM_015434 0,58631 1,43095
NM_013360 -0,58122 -1,38681
NM_002200 0,47752 1,94796
Contig44278_RC -0,42246 -0,906564
NM_019886 0,4143 2,75393
AF055033 0,37546 1,24607
AL080059 0,31843 1,50648
NM_000909 -0,27537 -
threshold  0,1117 -0,247492

Table 4. Features xi constituting the optimal subspace Fk[14] characterised by the lowest 
cross-validation error (CVE) and features xi constituting the lowest subspace Fk[11] with 
apparent error (AE) equal to 0 of the Breast cancer data set 
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Figures 6 and 7 show the apparent error (AE) and cross-validation error (CVE) obtained in 
different feature subspaces generated by the RLS method. Full separability of data subsets is 
preserved in feature subsets much smaller than the initial very large sets of genes. 

10. Conclusion  

The problem of feature selection is usually resolved in practice through the evaluation of the 
usefulness (the validity) of individual features (attributes, factors) (Liu & Motoda, 2008). In 
this approach, resulting feature subsets are composed of such features which have the 
strongest individual influence on the analysed outcome. Such approach is related to the 
assumption about the independence of the factors. However, in a complex system, such as 
the living organism, these factors are often related. An advantage of the relaxed linear 
separability (RLS) method is that one may identify directly and efficiently a subset of 
features that influences the outcome and assesses the combined effect of these features as 
prognostic factors.  
In accordance with the RLS method, the feature selection process involves two basic actions. 
The first of these actions is to generate the descending sequence (24) of feature subspaces 
Fk[nk]. The second of the these actions is to evaluate the quality of the individual feature 
subspaces Fk[nk] in the sequence (24). 
Generation of descending sequence (24) of feature subspaces Fk[nk] is done in the 
deterministic manner by multiple minimization of the criterion function the criterion 
function (v[n+1]) (12) combined with gradual increasing of the parameter  value. The 
criterion function (v[n+1]) (12) depends on the three nonnegative parameters: j - prices of 
the particular feature vectors xj[n] (1), i - feature costs, and  - the cost level. The 
composition of the consecutive feature subspaces Fk[nk] (24) depends on the choice of these 
parameters. For example, the costly features xi should have a sufficiently large values of the 
parameter i. A high value of the parameter i increases the chance for elimination of a given 
feature xi.  
Evaluation of the quality of the individual feature subspaces Fk[nk] is based in the RLS 
method on the cross-validation of the CPL optimal (Definition 3) linear classifier (25) 
designed in this subspace. The optimal linear classifier (25) is designed in the feature 
subspace Fk[nk] through the multiple minimization of the perceptron criterion function 
k(v[nk]) defined (8) on the reduced feature vectors yj[nk] (yj[nk]Fk[nk]) or the modified 
criterion function k(v[nk]) (12) with a small value (22) of the cost level .  
This article also contains a description of the experiments with feature selection based on the 
RLS method. Experiments of the first group were carried out on synthetic data. The 
multivariate synthetic data were generated randomly and deterministically divided into two 
learning sets according of predetermined key. The given key was in the form of linear 
combination of the unknown number of selected features. The aim of the experiment was to 
find an unknown key, based on available sets of multidimensional data. The experiment 
confirmed this possibility. 
Experiments of the second group were carried out on the genetic data sets Leucemia (Golub 
et al., 1999) and Brest cancer (van’t Veer et al., 2002). These experiments have shown, inter 
alia, that the RLS method enables finding interesting and not too large subsets of features, 
even if the number of features at the beginning is a huge. For example, in the case of the 
Brest cancer set, the feature space was reduced from the dimensionality n = 24481 till nk = 11 
while the linear separability (27) of the learning sets G+[nk] and G-[nk] (26) were preserved. 
The results of calculations described in this paper were obtained by using its own 
implementation of the basis exchange algorithms (http://irys.wi.pb.edu.pl/dmp). 
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Calculations in so high dimensional feature space F[n] as n = 24481 were made possible by 
achieving a high efficiency of these algorithms. 
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1. Introduction

The identification of genes is an ongoing research issue in the biomedical and bioinformatics
community. The Human Genome Project which was completed in 2003, identified
approximately 20,000+ genes in the human DNA, but there are still many of these genes
for which their function or role is unknown, and this accounts only for healthy DNA.
Genetic diseases like Cancer, Alzheimer, Hemophilia and others, have mechanisms that we
currently just started to understand. For instance, genes BRCA1 and BRCA2, famous for
their role in breast cancer (Friedman et al., 1994), only account for 5% of the incidence of the
aforementioned cancer (Oldenburg et al., 2007). Many questions rise: What are the rest of
the mechanisms involved in this cancer type? Are there other genes involved? How? This
only accounts for one type of cancer, and there are at least 177 different types according to
the National Cancer Institute 1. The straightforward method to deal with this problem is
to do wet lab experiments with large samples of normal and disease tissue, to test under
different conditions the reactions, and check the expression or lack of it in different genes.
The complication with this method is the cost, it takes time, it requires specialized equipment,
and thus the economic price tag is high. Fortunately the bioinformatics area has acquired
maturity during the recent years, biological data is becoming available in different formats
throughout different databases and publications are providing new insights. Thanks to these,
computational methods can be developed, methods that would save time, effort and money,
methods that could help biomedical researchers get clues on which genes to explore on the
wet laboratory, so that time is not wasted on genes that are unlikely to contribute in a given
disease.
Gene Prioritization methods can be used to find genes that were previously unknown to be
related to a given disease. The general definition of gene prioritization is: Given a disease D, a
candidate gene set C, and the training data T, then input all these data to the method and it will
compute a score for each of the candidate genes, higher scoring genes are supposed to be the
genes that are most likely related to disease D, see fig. 1. Methods can be classified according
to the type of input data that the method uses, as Text and Data Mining Methods and Network
Based Methods. Text and Data Mining methods use training data like genetic localisation,
gene expression, phenotypic data (van Driel et al., 2003), PubMeb abstracts (Tiffin et al., 2005),
spatial gene expression profiles, linkage analysis (Piro et al., 2010), gene ontology and others
(Adie et al., 2005; Ashburner et al., 2000; Schlicker et al., 2010); as the name suggests this

1 http://www.cancer.gov/cancertopics/alphalist
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methods mine the genome or mine the available biomedical literature to produce the scores
of the candidate genes. Network Based Methods, use biological networks (Chen et al., 2009;
Morrison et al., 2005) as the back bone of the prioritization method, however, some network
based methods also combine some data and text mining techniques to improve their results
(Aerts et al., 2006; Hutz et al., 2008).
The purpose of this chapter is to give an introduction into the Gene Prioritization Problem.
Following the introduction a section explaining Biological Networks is presented as this is
necessary background to understand the network based prioritization methods. After this
section, we discuss about current state of the art prioritization methods with emphasis in
network based methods. Next sections discuss our own prioritization method that is a
network based method with a novel microarray data integration. A discussion on Challenges
and Future Research opportunities follows and finally the conclusions of this chapter along
with a list of available resources for Gene Prioritization.

Fig. 1. General Gene Prioritization Overview

2. Biological networks

2.1 Graph theory background
A graph is a data structure that represents a set of relationships between elements or objects.
Formally a graph G is a pair defined by G = (V, E), where V is a set of elements that
represent the nodes or vertices of the graph, the vertices in most applications hold the
name of the attribute being represented. E is the set of edges, where each edge represent
a relation between two vertices, an edge is defined by E = {(u, v)|u, v ∈ V}, this edges
may hold additional information as weight, confidence or distance between nodes, therefore
having E = {(u, v, w)|u, v ∈ V and w ∈ Re}. The edges may represent direction, where
(u, v) �= (v, u), in which case the graph is called directed graph, and when direction is not
important, the graph is called undirected graph.

Graph Properties

Among the intrinsic properties of a graph we have: Nodes, the number of nodes in the
network, formally n = |V|. Edges, the number of edges in the graph, formally e = |E|.
Connectivity is a property of the graph, it is defined to be connectivity(G) = e

N where
N = (n

2) is the maximum number of possible edges the graph can have. A graph with
connectivity values closer to one would be called dense, and if the connectivity value is close
to zero the graph would be called sparse, it is worth mentioning that there is no agreed
exact value to consider a graph sparse or dense among the graph theory community. The
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diameter of a graph is the distance of the longest shortest path on the graph. Graph Path, is
a sequence of vertices of the form {v1, v2, v3, ..., vk} where v1 is the starting node and vk is the
destination node, and (vi, vi+1) ∈ E; the length of the path is defined by l = ∑k−1

i=1 wi where
wi ∈ (vi, vi+1, wi), when all weights are equal to 1 then the length of the path is k − 1. A
shortest path from vertex v to u is one of the paths that has the least accumulated weight from
u to v, note that there can be multiple shortest paths from one node to another.

Nodes Properties

The most basic node property is the degree that denotes the number of connections a node
has; in directed graphs there can be a distinction between incoming and outgoing connections,
called in-degree and out-degree respectively. Several measures of centrality have been created
to represent how “central” a node with respect to the other nodes in the graph, this measures
are: Closeness Centrality, based in the average shortest path to the other vertices in the
network; Betweenness Centrality, based on the occurrence of the vertex in the shortest paths
of the network, Eigenvalue Centrality, based in the eigenvector of the adjacency matrix that
represents the graph (Freeman, 1979).

2.2 Biological networks overview
In this section a brief background on biological networks is presented. As it was explained
in the previous section, a graph, or network, is a set of relationship between objects, in
the specific case of biological networks those objects are related to biological processes.
Typical biological networks include: gene regulation networks, signal transduction networks,
metabolic networks and protein interaction networks (PIN) (Junker & Schreiber, 2008). Gene
regulation networks, also known as signal transcriptional regulation networks, represent
how genes control the expression of other genes; these networks are often represented by
directed graphs. Signal transduction networks are an extension of gene regulation networks
that represents the links between intracellular processes to extracellular functions in response
to diverse external events and stimuli. The final target in a signal transduction pathway
is either a transcription factor or a metabolic enzyme. Metabolic networks are determined
through biochemical experiments, and consist in metabolites converting into each other with
the interaction of enzymes. The last of the typical biological networks are the PINs, they
represent the interaction between different gene products, they are usually modeled with
undirected networks, indicating only that there is a probable functional relation between the
two related proteins without indicating direction. Some other networks exist that represent
specific problem oriented networks, like (Yeh et al., 2009) that identifies genetic regulatory
network in prostate cancer using microarray data. Fig. 2 and Fig. 3 show the general structure
of a biological network and a sample of a PIN.

2.3 Protein interaction networks
These networks are the central focus of attention in the network based disease gene
prioritization, so they deserve special attention. There are four main approaches to create
PIN: high throughput technology, manual curation from published experiments results,
automatic text mining from published literature and computational prediction from diverse
genomic data (Wu et al., 2008). Some publicly available databases hold high quality, manually
curated PIN, such as HPRD (Prasad et al., 2009), BIND (Bader et al., 2003) and BioGRID
(Breitkreutz et al., 2008), in our work we have used BioIR (Liu et al., 2009) which integrates the
previously mentioned databases along with DIP (Salwinski et al., 2004), IntAct (Aranda et al.,
2010), MIPS (Pagel et al., 2005) and MINT (Ceol et al., 2010).
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Fig. 2. Structure of a Biological Network

Fig. 3. Sample of Human PIN

2.3.1 Creation and curation of PIN
Current PIN databases are a rich resource of protein interactions, they mostly differ on the way
they acquire their data, or on the way they validate it. For instance HPRD, BIND, BioGRID,
MINT and MIPS are manually curated, this means a team of biologists check the literature
to find new interactions, and once an interaction is confirmed it is added to the database.
On the other hand DIP and IntAct are based on literature mining, they achieve this using
computational methods that retrieve the interaction knowledge automatically from published
papers. Another method to create PIN is using microarray data samples, these methods rely
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on the principle that co-expressing genes must be related, so by using statistical methods they
can produce the list of likely relationships from the list of gene products in the microarray
data.

2.3.2 Properties of PIN
PIN are known to have the following properties:

• Sparseness, although there is no one preset value of connectivity, it has been showed that
biological networks are sparse containing much less than O(n2) edges in the network. Due
to this property biological networks can be stored more efficiently in memory, and some
algorithms exploit it to improve significantly their time performance.

• Small World, the concept was originated in the social sciences to explain how inside social
networks the path length to go from one node to another is very small. However this is a
subjective measure that lacks statistical or objective measure for actual networks. A more
precise property that is seen in most empirical networks is Power law degree distribution,
where the networks show that some few vertices have high degree and much more vertices
have very low degree (Barabasi & Albert, 1999). Recent research has shown that biological
networks do not necessarily follow power law degree distribution, but confirm that the
distribution of degrees is heavy tailed (Garcia De Lomana et al., 2010).

• One of the disadvantageous properties of PIN is that they have a noisy nature, there is a
enormous amount of missing information and false positives in the data (Edwards et al.,
2002), therefore this fact must be taken into consideration when dealing with this kind of
networks.

• As a consequence of the small world property, few nodes have high degree value, and it
has been discovered that these nodes play an important role in the network, as opposed to
other nonessential genes.

• Motifs, deep analysis in PIN has shown that there are recurrent subnetworks appearing in
the full network, these subnetworks are called motifs. They have been discovered using
statistical tools and showing that they occur more in the network than just by random
coincidence (Junker & Schreiber, 2008).

3. Previous and on-going research

As was discussed in the introduction of the chapter prioritization methods can be classified
as text and data mining based and network based methods. The main difference between the
different approaches is the kind of data they use to do the prioritization of the candidate set.

3.1 Text and data mining methods
These methods usually rank candidate genes by matching their information and profile
across multiple biological data sources. GeneSeeker is a web tool that selects candidate
genes of the interest disease based on gene expression and phenotypic data from human
and mouse (van Driel et al., 2003). eVOC system performs candidate gene selection based
on the co-occurrence of disease name in PubMed abstracts through data-mining methods
(Tiffin et al., 2005). DGP (Disease Gene Prediction) (López-Bigas & Ouzounis, 2004) and
PROSPECTS (Adie et al., 2005) use basic sequence information to classify genes as likely or
unlikely to be involved with the disease under study. The extended version of PROSPECTS,
SUSPECTS (Adie et al., 2006), is developed by integrating annotation data from Gene
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Ontology (GO) (Ashburner et al., 2000), InterPro and expression data. However, many of the
methods suffer from limitations imposed by the data source which has little knowledge about
the disease. GO terms include a brief description of the corresponding biological function
of the genes but only 60% of all human genes have associated GO terms and these terms
may be inconsistent due to differences in curators’ judgment (Dolan et al., 2005). Due to
the incomplete data, the approaches reduce the probability to rank the candidate genes of
a specific disease.
Most recent methods of this kind of prioritization include MedSim (Schlicker et al., 2010)
and a method based on spatially mapped gene expression (Piro et al., 2010). MedSim uses
GO enrichment and applies their own similarities measures (Schlicker et al., 2007), by doing
so they manage to extend the existing annotations to achieve the assignment of known
disease genes to the correct phenotypes. The spatially mapped gene expression method
uses a combination of data including linkage analysis, differential expression to acquire the
list of candidates genes, then by using the phenotypes and associated phenotypes they find
reference genes which in turn are filtered with the spatial gene-expression data; then by using
both the candidate genes and the reference genes they apply their method to do the gene
ranking.

3.2 Network based methods
As the name suggests these methods primarily use biological networks to do the prioritization
process, this is mainly due to the increasing availability of human protein interaction data,
and the emergence of network analysis. These methods usually rely on the the assumption
that genes that are associated with diseases have a heavy interaction with each other
(Erten & Koyutürk, 2010). Fig. 4 shows a general overview of these type of methods. The
input that they commonly receive is the set of seed genes S that represent the previous
knowledge to the method, genes that are known to be related to some disease D, along with
these genes a score of how much they are related to the disease is given, denoted by σ(v, D).
The other part of the input is the genome of the organism represented by its PIN, denoted
in the picture as the candidate set C. After the method calculates the score, just like any other
method, it outputs the set of candidate genes with their score, where higher scores have higher
probability of being related to disease D.

Fig. 4. Network Based Gene Prioritization Methods

Furthermore, network based methods can be classified in local and global methods. Local
methods use local information to the seed genes, basically classifying by network proximity
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through the inspection of the direct neighbors of the seed genes or higher order neighbors in
other words nodes in the network that are not directly adjacent to the seed nodes but are easily
reached by them. Global methods model the flow through the whole network to provide a
score of the connectivity and impact of the seed genes or previous knowledge on the rest of
the nodes.
Network based gene prioritization is performed by assessing how much genes interact
together and are close to known disease genes in protein networks. Endeavour takes a
machine learning approach by building a model with initial known disease-related genes
as training set, then that model is used to rank the test set of candidate genes according
to the similarity score using multiple genomic data sources(Aerts et al., 2006). Chen et al.
applied link based strategies widely used in social and web network analyses such as HITS
with priors, PageRank, and K-step Markov to prioritize disease candidate genes based on
protein networks (Chen et al., 2009). Ma et al. developed a system for gene prioritization
by Combining Gene expression and protein-protein Interaction network (CGI) using Markov
random field theory (Ma et al., 2007). CANDID used information from publications, protein
domain descriptions, cross-species conservation measures, gene expression profiles and
protein-protein interactions to do a prioritization algorithm on candidate genes that influence
complex human traits (Hutz et al., 2008). GeneRank ranks genes based on Google’s PageRank
algorithm and expression data to do gene prioritization(Morrison et al., 2005). Ozgur et al.
explored the connectivity properties of biological networks to compute an association score
between candidate and disease-related genes (Özgür et al., 2008). Mani et al. proposed
a method called Interactome Dysregulation Enrichment Analysis (IDEA) to predict cancer
related genes using interactome and microarray data (Mani et al., 2008). Karni, Soreq,
and Sharan attempted to predict the causal gene from expression profile data and they
identified a set of disease-related genes that could best explain the expression changes of the
disease-related genes in terms of probable pathways leading from the causal to the affected
genes in the network (Karni et al., 2009).Tables 1 and 2 show a summary of the aforementioned
methods.

4. Gene prioritization from microarray data based on shortest paths GP-MIDAS

In this section we present our current advances in our own method: Gene Prioritization from
MIcroarray DAta on Shortest Paths (GP-MIDAS). Our approach differs from other network
based methods in the way that we assign the weights to the edges of the PIN, by doing so we
manage to get considerable performance compared to other state of the art methods.

4.1 Material
We applied GP-MIDAS for the study of prostate cancer, using the following data sources:

• PIN: Taking advantage of the availability of public protein interaction databases, and
to have a more complete protein-protein interaction network, we integrated PIN data
warehouse including HPRD, DIP, BIND, IntAct, MIPS, MINT and BioGrid databases which
has successfully gathered 54,283 available and non-redundant PIN pairs among 10,710
proteins into BioIR database (Liu et al., 2009).

• Microarray Data: We integrated microarray data taken from (Lapointe et al., 2004) that
consists of 72 primary tumors and 41 normal control sample in Stanford Microarray
Database (SMD) (Hubble et al., 2009).
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Method Brief Description

Gene Seeker Gene Expression and Phenotypic Data from Human and Mouse
(van Driel et al., 2003)

eVOC Co-Occurrence of disease name on PubMed abstracts (Tiffin et al.,
2005)

DGP Basic Sequence Information (López-Bigas & Ouzounis, 2004)

PROSPECTS Basic Sequence Information (Adie et al., 2006)

SUSPECTS Extension of PROSPECTS, incorporates GO (Adie et al., 2005;
Ashburner et al., 2000)

MedSim Gene Ontology enrichment with their functional similarity measures
(Schlicker et al., 2010)

Spatially Mapped
Expression

3D Gene Expression Data, Expression Profiles, Phenotype data
(Piro et al., 2010)

Limitations Generally imposed by the data source which carries little knowledge
about the disease. For instance GO terms include brief description
of the corresponding biological function of the genes but only 60%
of all human genes have associated GO terms, and they may be
inconsistent due to differences in curators’ judgement (Dolan et al.,
2005).

Table 1. Data and Text Mining Gene Prioritization Methods

• Seed Genes: The initial seed genes known to be related to the prostate cancer are
extracted from public Online Mendelian Inheritance in Man (OMIM) database which stores
gene-disease associations provided by summaries of publications. The list of the seed
genes are shown in Table 3.

• Test Genes: We took the KEGG pathway database (Kanehisa et al., 2004) and PGDB
database (Li et al., 2003) that are manually curated database for prostate cancer and
obtained 102 genes as the truly disease-related genes for prostate cancer. We use this set to
test the accuracy of our method.

4.2 Input preparation
The collected material needs to be prepared to be useful for our method, the details on this
procedure are presented as follows.

4.2.1 Cope with missing values
The microarray dataset consists of N genes and M experiments and can be represented as an
M × N matrix. It presents different gene expression levels Xij | (i ∈ M, j ∈ N) in this matrix.
Gene expressions either over-expressed or under-expressed can be revealed in terms of two
colored channel in the microarray data representing the intensity of the cancer and normal
samples, with values ranging from 0 to 255. The gene expression ratios were calculated as
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Method Brief Description Data Sources

Endeavor Machine Learning: Using initially known
disease genes; then multiple genomic data
sources to rank (Aerts et al., 2006)

BIND

HITS with Priors Prioritization Based on Networks
using Social and Web Networks
Analysis (Chen et al., 2009)

HPRD, BIND,
BioGRIDPageRank

K-Step Markov

CGI Combination of Protein Interaction
Network and Gene Expression using
Markov Random Field Theory (Ma et al.,
2007)

MIPS, DIP

CANDID Uses Publications, Protein domain
descriptions, cross species conservation
measures, gene expression profiles and
Protein Interaction Networks (Hutz et al.,
2008)

NCBI Conserved Domain
Database

GeneRank Based on Google’s PageRank algorithm,
uses expression data (Morrison et al., 2005)

GO and Synthetic Networks

IDEA Uses the Interactome and Microarray data
(Mani et al., 2008)

B Cell Interactome and
OMIM

CIPHER Based on the assembly of a
Gene-Phenotype Network (Wu et al.,
2008)

HPRD and OMIM

Özgür et al. (2008) Using connectivity properties of the
networks

Literature Mining by GIN

Karni et al. (2009) Verifies expression changes of downstream
genes

HPRD

Limitations Most of these approaches include additional interactions
predicted from co-expression, pathway, functional or
literature data, but still fail to incorporate weights
expressing the confidence on the evidence of the
interactions.

GP-MIDAS Our proposed method, integrates Protein Interaction
Network with Normal and Disease Microarray Data,
using this integration we apply all-pairs shortest paths to
find the significant networks and calculate the score for
the genes.

Table 2. Network Based Gene Prioritization Methods
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Gene ID Gene Symbol Gene name

367 AR Androgen receptor
675 BRCA2 Breast cancer type 2 susceptibility protein
3732 CD82 CD82 antigen
11200 CHEK2 Serine/threonine-protein kinase Chk2
60528 ELAC2 Zinc phosphodiesterase ELAC protein 2
2048 EPHB2 Ephrin type-B receptor 2 precursor
3092 HIP1 Huntingtin-interacting protein 1
1316 KLF6 Krueppel-like factor 6
8379 MAD1L1 Mitotic spindle assembly checkpoint protein MAD
4481 MSR1 Macrophage scavenger receptor types I and II
4601 MXI1 MAX-interacting protein 1
7834 PCAP Predisposing for prostate cancer
5728 PTEN/ PTENP1 Phosphatidylinositol-3,4,5-trisphosphate

3-phosphatase and dual- specificity protein
phosphatase PTEN

6041 RNASEL 2-5A-dependent ribonuclease
5513 HPC1 Hereditary prostate cancer 1

Table 3. Seed Genes of Prostate Cancer from OMIM Database

the median value of the pixels minus background pixel median value for one color channel
divided by the same for the other channel because the mean value of the normalized ratio is
much easier to be affected by noise than the median value. We applied the base-2 logarithmic
transformation of each gene among experimental dataset and this value carried out the
normalization of the gene expression value with mean 0 and standard deviation 1 in every
experiment. Although microarray can be used to detect thousands of genes under a variety
of conditions, there are still many missing values in microarray (Troyanskaya et al., 2001).
The reasons for missing values include insufficient resolution, image corruption, and dust or
scratches on the slide. If a gene contains many missing values in experiments, it is not easy to
determine a precise expression value for each gene that causes a difficulty in the subsequent
analysis of the regulation networks. However, we can not simply remove all gene data that
contains missing values because the number of remaining genes will become too small to
predict the network correctly. In order to get a better result, the genes that contain less than
20% entries missing in all experiment are picked. In order to get as complete data as possible,
we use the K-Nearest-Neighbors (KNN) algorithm (Troyanskaya et al., 2001) to estimate the
missing values.

4.2.2 Update of microarray expression values
Once the necessary microarray data is collected, we need to preprocess it, so that it becomes
ready to be used in our methods. The preprocessing procedure consists of two steps:

1. Transform the Microarray Data Expression Values. The purpose of this transformation
is to make the expression values ready to be used as weights in the network. This
transformation has two steps, initially the values are updated using a sample of normal
expression microarray data, the effect of this operation is that values that are very
similar between normal and cancer samples should have less impact on our analysis. To
accomplish this we subtract the value from the cancer microarray data to the value of
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the normal expression data as shown in Equation 1. The next step is to transform the
values, the rationale behind this transformation is that expression values may be negative
for under expressed genes, and if these values are used as they are, our network may have
negative weights, thus making shortest paths analysis more difficult. Equation 2 shows
how the expression values are transformed.

ExpressionValuei = ExpressionValuei − NormalExpresionValuei (1)

Trans f ormedExpresionValuei = − ln
( | ExpresionValuei | −min

max − min

)
(2)

Considering that the sign of of the value in the microarray data represents over or under
expression, and the fact that we want to make a representation of distance, for this is what
we want in our quantitative analysis, we use the absolute value of the microarray data,
then these results are normalized, using the max and min values found, by doing these two
steps we get values in the range [0, 1], where values closer to 1 mean that they are more
expressed (either over expressed or under expressed). Finally we compute the negative
of the natural logarithm on the previous results, this is to make smaller numbers (less
expression level) become large distances, and bigger numbers (higher expression level)
become short distances. The result of this step is a transformation of the gene expression,
where more expressed genes have smaller value, and less expressed genes have higher
values, in the next step we convert this values into distances between genes, thus more
expressed genes relationships will become shorter distances than less expressed genes
relationships. In the case the ExpresionValuei == min we just set the whole result to
be a big value, since ln(0) is not defined.

2. Convert to Human Protein Interaction Network to a Weighted Network. Since we need
the network to become a weighted one, where these weights are related to the specific
interactions in cancer related network, we use the transformed values of the microarray
data. However the microarray data provides transformed expression values for the genes,
not for the relationship between genes. The Pearson correlation coefficient for analyzing
gene-pair relationships could be unsuitable to explore the true gene relationship because
it is overly sensitive to the shape of an expression curve (Kim et al., 2007).To overcome
this issue, we combine the values of the two interacting genes together. For instance
if we have microarray values {(SEPW1, 4.097), (BRCA1, 1.395), (AKT1, 2.006), (BACH1,
2.823), (AHNAK, 3.597)} and we have the following edges in our graph {(AKT1, AHNAK),
(BACH1, BRCA1), (BRCA1, AKT1)}, then the first edge weight would be the addition of the
transformed expression values of each of the vertices 2.006 + 3.597 = 5.603 providing the
weight of the first edge. The resulting weighted edges of this instance would be {(AKT1,
AHNAK, 5.603), (BACH1, BRCA1, 4.218), (BRCA1, AKT1, 3.401)}.

4.3 Method description
Our current method is based on the analysis of the shortest paths between all the pairs of the
genes on the input network.

4.3.1 Shortest paths analysis
Genes co-occurring in a particular network tend to participate together in related biological
processes based on their linkage with the known disease genes (Tin et al., 2009). Our
methodology is based in the the computation of all pairs shortest paths (APSP) in the network
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and the retrieval of these paths for posterior analysis in our experiments. The computation
of APSP is carried out using our implementation of the all pairs shortest paths algorithm
(Arias & Soo, 2010), which takes advantage of the topology and special characteristics of
biological networks, such as sparseness and singles, nodes that have only one connection.
We call our implementation KC-APSP. At this step of the process we input our prepared PIN
and get as result a list of all the shortest paths between all the pair combination of the genes.

4.3.2 Scoring of genes on shortest paths
Once all the shortest paths are computed, we traverse the list of shortest paths (PathList),
to verify if any of the seed genes are on the resulting paths, if so, these paths need to be
considered for the scoring. Finally a score is computed for each gene. This analysis is done
across M microarray data experiments.

4.3.3 Compute the score function
Having all the paths stored in PathListm for m ∈ M we can compute the denominator denomm,
to be used in the score function using Equation 3, this is done for each microarray experiment
m.

denomm =
n

∑
i=1

1
lim

(3)

Where lim is the length of the ith path in sample m ∈ M for n generated and filtered by seed set
paths. Once the denominator is ready, we proceed to compute the score. For each experiment
m of M, and for each gene g on the network we compute the score for each gene according to
Equation 4.

Score(Genei,m) =
PathListm

∑
Genei,m∈Pathj,m

1
lj,m

denomm
(4)

The motivation behind Equation 4 is that a gene that appears in more generated paths is going
to achieve higher score, even higher for paths with shorter length, the highest being 1 if the
gene appears in all the found paths.

5. Current results

In this section we present our current results, first we discuss the leave one out cross
validation, and lastly we present the precision and recall of our method compared to other
methods that use similar data sources to GP-MIDAS. As it is shown in this section, our method
presents promising results that can lay the foundation for more advanced and accurate
approaches.

5.1 Leave-one-out cross validation of our method
The performance of our algorithm was evaluated by leave-one-out cross validation method. In
each experimental test on a known-disease gene set S, known as the Seed Set, which contains
|S| genes; we delete one gene g from the Seed Set thus having S′ = S − g. We used S′ set to
train our prioritization model. Then, we prioritized the Candidate Gene Set to determine the
rank of that deleted gene g. We got 100% to cover the deleted genes from the Candidate Gene
Set and the rankness of those seed genes are listed in Table 4; LOO Score Position refers to the
result of GP-MIDAS after deleting the given gene g from the seed set, Closeness Centrality

130 Selected Works in Bioinformatics



Disease Gene Prioritization 13

Recovered Subnetworks All Seed Genes Subnet.
Gene LOO Score Position Closeness Centrality

Position
Closeness Centrality
Position

AR 1 2 2
PTEN 6 23 24
BRCA2 10 36 26
EPHB2 13 46 42
HIP1 14 43 43
CHEK2 15 35 34
RNASEL 19 53 53
MXI1 20 58 58
MAD1L1 21 53 47
ELAC2 22 61 63
KLF6 26 42 40
MSR1 27 61 62
CD82 33 54 50

Table 4. Leave One Out Experiment Results

on Recovered Network refers to this centrality measure on the induced subgraph made from
the seed set without the given gene g and all the shortest paths generated by this set pairs,
and the last column refers to the centrality measure position on the full network for the given
gene g. In order to realize the performance of gene prioritization with the weighted graph
based on the gene expression, we compare the closeness centrality position in the entire PIN
and sub-networks reconstructed from seed genes. From the entire network and sub-network
of the seed genes using closeness properties, only 1 original seed genes rank among its top 20
ranking genes. However, we recover 8 seed genes among top 20 ranking genes. The results
confirmed that PIN without any gene expression have more false positive and our method
integrated gene expression is potentially able to perform better in the identification of genes
associated with a given disease and should be more informative.

5.2 The precision and recall comparison with previous methods
We evaluated the performance of our algorithm in terms of overall precision versus recall
when varying the rank threshold. Precision is the fraction of true gene-disease associations
that ranked within the top k% in the corresponding trial of the cross validation procedure.
Recall is the fraction of trials in which the disease-related genes from PGDB was recovered
as one of the top k% scoring ones. We compare the performance with the following network
based methods: GeneRanker, ENDEAVOUR, HITS with priors, PageRank, K-step Markov and
CIPHER. In GeneRanker, we do not use 543 genes reported to be associated to prostate cancer
in the literature but applied the seed as presented in the list of genes in Table 3. We set a back
probability of 0.3 for PageRank with priors and HITS with priors, this value is selected because
(Chen et al., 2009) express that this is the optimal value for back probability, and step size 6
for K-Step Markov method in ToppNet. Further, we reason that the use of literature evidence
in this benchmark test would unfairly improve ENDEAVOUR’s performance because these
literatures may include direct evidence that reports the association between the gene and
the disease. Neither one of these methods rank the seed genes therefore we only compare
the performance with all the genes in the candidate set except the seed genes. Among the
top 10 genes, we got 4 prostate cancer-related genes while applying both normal and cancer
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Precision (%)
Top K 10 20 30 40 50

Methods

HITS with Priors 40 25 23.3 17.5 18
K-Step Markov 20 20 20 22.5 18
PageRank 20 15 20 17.5 18
GeneRanker 30 20 20 20 18
Endeavour 10 15 20 20 20
CIPHER 10 10 10 20 20
GP-MIDAS 40 30 23.3 17.5 20

Table 5. Precision for Top K Rank Comparison Across Methods

Recall (%)
Top K 10 20 30 40 50

Methods

HITS with Priors 4.5 5.6 7.9 7.9 10.1
K-Step Markov 2.2 4.5 6.7 10.1 10.1
PageRank 2.2 3.4 6.7 7.9 10.1
GeneRanker 3.4 4.5 6.7 9 10.1
Endeavour 1 2.9 5.9 7.8 14.6
CIPHER 1.1 2.2 3.4 9.0 11.2
GP-MIDAS 4.5 6.7 7.9 7.9 14.6

Table 6. Recall for Top K Rank Comparison Across Methods

samples and the performance is equal to the HITS with priors which is the highest one from
the previous methods. We also get the highest precision among the top 50 ranking genes.
Tables 5 and 6 denote that our method gets the highest precision and recall. Using the different
expression values between cancer and normal samples may help us to extract more significant
genes and rank them to be higher. Fig. 5 shows the combined precision and recall value using
F-Measure, in the figure can be clearly seen that in most instances GP-MIDAS outperforms
other methods.

6. Challenges and future research opportunities

As it was previously discussed gene prioritization methods can be either data and text mining
based or network based, however the division line between these two approaches is less clear
every day as some methods integrate both approaches and use more information to improve
the accuracy of the results. Despite the increase of accuracy, the main challenge is to find
novel genes that are actually involved with a given disease, genes that have not been reported
before, presenting the problem of proving that the newly found genes are in fact involved with
the disease. Therefore it becomes essential to present more and better biological explanations
on the definition of newer approaches, by doing so biomedical researchers will have more
confidence in trying the novel genes in in-vitro experiments. One clear research opportunity is
presented, and it is the combination of different network based approaches, by using local and
global information. The work of (Erten & Koyutürk, 2010) shows promising results, aiming
at the discovery of loosely connected genes using statistical correction schemes that help
overcome the preference of straightforward method for genes with high centrality values; this
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Fig. 5. F-Measure of different methods applied to Prostate Cancer

aproach uses only global methods, (Navlakha & Kingsford, 2010) combines several network
based methods to produce a new score which also shows a potential new research line.

7. Conclusions

The past few years have shown an increasing interest in the disease gene prioritization
problem and thanks to the availability of more and better data sources there has been a
growing number of methods and approaches to this problem. A plethora of methods have
become available for the genetics disease research community, and as the methods become
more mature the results will become increasingly accurate and more biologically meaningful.
Our own approach GP-MIDAS has proven to be promising showing a better performance
in most instances to related methods, exposing that by setting the weights of the PIN to have
more related meaning to the given disease the results can be better than previous plain shortest
paths methodologies.
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Resources

In this last section we present online resources, please note that since this is an evolving field,
some of these resources can change with time. For a list of projects hosting biological networks
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see Table 7; these sites have the capability of being queried for specific proteins, or the user
can also download the interaction network that is needed for his particular research. For a
list of sites that offer online diseases information or software tools for disease information see
Table 8. For a list of sites that offer online ontologies or software tools for ontologies see Table
9. And for a list of sites that offer online prioritization or software tools to do prioritization
see Table 10.

Human Protein
Reference Database

HPRD http://www.hprd.org

Biomolecular Interaction
Network Database

BIND http://bond.unleashedinformatics.com

Biological General
Repository for
Interaction Datasets

BioGRID http://thebiogrid.org/

Database of Interacting
Proteins

DIP http://dip.doe-mbi.ucla.edu/

IntAct Molecular
Interaction Database

IntAct http://www.ebi.ac.uk/intact/

The MIPS Mammalian
Protein-Protein
Interaction Database

MIPS http://mips.helmholtz−muenchen.de/proj/ppi/

Molecular Interaction
Database

MINT http://mint.bio.uniroma2.it/mint/

Kyoto Encyclopedia of
Genes and Genomes

KEGG http://www.genome.jp/kegg/

National Center
for Biotechnology
Information

NCBI http://www.ncbi.nlm.nih.gov/

Table 7. Available Biological Networks Sites

Online Mendelian
Inheritance in Man

OMIM http://www.ncbi.nlm.nih.gov/omim

The Human Gene
Compendium

GeneCards http://www.genecards.org/

Genetic Association
Database

GAD http://geneticassociationdb.nih.gov/

Catalog of Published
Genome Wide
Association Studies

GWAS http://www.genome.gov/gwastudies/

Table 8. Available Disease Information Sites

Gene Ontology (The Gene Ontology Consortium, 2008) http://www.geneontology.org/
eVOC Ontology (Kelso et al., 2003) http://www.evocontology.org/

InterPro (Hunter et al., 2009) http://www.ebi.ac.uk/interpro/

Table 9. Available Biological Ontology Sites
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MedSim http://www.funsimmat.de/
Endeavor http://homes.esat.kuleuven.be/ bioiuser/endeavour/index.php

ToppGene http://toppgene.cchmc.org/
Cypher http://rulai.cshl.edu/tools/cipher/

CANDID https://dsgweb.wustl.edu/hutz/candid.html
SUSPECTS http://www.genetics.med.ed.ac.uk/suspects/
GP-MIDAS http://bioir.cs.nthu.edu.tw/bne

Table 10. Available Gene Prioritization Sites
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1. Introduction 

The past thirty years have witnessed a renaissance in biology as advances in technology 
contributed to discoveries at ever-greater orders of magnitude. One of the primary reasons 
for this revolution has been the advancement of technologies that allow high-throughput 
discovery and processing of data. This accomplishment has placed volumes of data in the 
realm of “discovery” science. An important point in this period came with the complete 
sequencing of several microbial genomes followed by the sequencing of the first 
multicellular organism, Caenorhabditis elegans, and eventually that of humans and various 
model organisms, such as Drosophila melanogaster. The edifice of the genetic code fell by 
wedding a biological technique developed by Sanger, known as shotgun sequencing (Sanger 
et al., 1977), with that of computational techniques utilizing high-speed computers. Without 
the advances in computer chips and processors, at a pace defined by Moore’s law (Moore, 
1965), sequencing would have been dramatically slower and would not have brought about 
the age of bioinformatics, a symbiosis of biological data, large amounts of information, and 
computer science. 
The hypothesis that gene number is related to organism complexity is quickly discarded 
when comparing Homo sapiens, which have a genome of only 3.1 billion base pairs (Olivier et 
al., 2001; Venter et al., 20010), to other organisms. Estimates for the marbled lungfish, 
Protopterus aethiopicus, suggest 133 billion base pairs (Pedersen, 1971), making it the largest 
vertebrate genome, while, to date, the lowly amoeba, Amoeba dubia, is estimated to have the 
largest genome overall at 670 billion base pairs (McGrath & Katz, 2004). However, large 
genomes may be a liability, as suggested in the plant world, where Japonica paris, which has 
a genome of approximately 150 billion base pairs (Pellicer et al., 2010), grows more slowly 
and is more sensitive to changes in the environment (Vinogradov, 2003). In vertebrates, 
there appears to be an inverse correlation between genome size and brain size (Andrews & 
Gregory, 2009), thus, complexity may lie with other factors such as epigenetics and protein 
interactions. While estimates of human gene numbers rest between 20,000 – 30,000 genes, 
these genes may encode over 500,000 proteins. Thus, the proteome of a cell can range from 
several thousand proteins in prokaryotes to over 10,000 in eukaryotes. These numbers are 



 
Selected Works in Bioinformatics 

 

140 

made more daunting with the realization that approximately 80% of the proteins in a cell do 
not stand alone, but rather form complexes with other proteins. Moreover, this complexity 
increases as the proteome of a cell can change under various conditions such as stress, 
disease, cell cycle, etc.  
Unraveling the biological complexities in a cell’s fate, growth, function, death, and disease 
has led to a number of techniques to unlock the mechanisms to these processes. Among 
these advances are those that produce large amounts of data and include gene and protein 
arrays, phage displays, yeast two-hybrid screens, and coaffinity or coimmunoprecipitation 
in combination with shotgun proteomics, which utilizes mass spectrometry. Innovations in 
techniques exploiting mass spectrometry are of particular significance, as this technology 
has improved increasingly over time. With these improvements, many technologies, once 
outside the realm of anyone but experts, are now user-friendly, opening the possibilities for 
utilization by many more scientists. Consequently, these changes in technology and 
accessibility have led to the formation of large databanks curated by individuals with an 
expertise in bioinformatics. A global view of one’s own data relative to those published by 
others increases dramatically, as one begins to delve into these databases with software tools 
that retrieve large amounts of deposited data. 
A number of methods can be used to unravel protein pathways, but the starting point is 
always the wet bench experiment that will reveal the complexity of gene expression or 
protein-protein interactions. This first step is fraught with potential limitations and pitfalls 
that vary depending on the technique. However, the object is to use an approach that will 
allow for the capture of many protein-protein interactions without the inclusion of too many 
artifacts. In my lab, we have used two techniques over the last 10 years. These are the yeast 
two-hybrid system and coimmunoprecipitation in conjunction with two-dimensional gel 
electrophoresis and mass spectrometry. Both of these procedures can yield large amounts of 
viable data, which leaves one with the option of either cherry-picking specific protein 
partners or opening a whole new world, by examining the data from a global perspective 
using bioinformatics. The latter approach, also known as systems biology, examines the 
newly discovered proteins in the larger context of protein networks or interactomes. These 
discoveries are made by using large datasets readily available online with software that will 
map the many interactions once mining of these libraries is completed and integrated with 
the experimental data. Within these maps you will find single proteins, or nodes, connected 
to other proteins, via lines known as edges. In other instances, you may find clusters of 
proteins in which, for example, a central protein acts like the hub in a wheel, forming 
connections to six or more other proteins. These hubs might reveal previously unknown 
functions of your protein, since they can have important regulatory roles in the cell (Fox et 
al., 2011). Moreover, they might suggest new subcellular functions, if they are localized 
primarily to specific cellular organelles.  
In light of these challenges, this chapter will describe the use of bench experiments and 
computational techniques to determine and exploit protein-protein interactions and unravel 
their relation to protein networks and possibly newly discovered mechanisms. These 
descriptions will include coimmunoprecipitation, verification using reciprocal 
coimmunoprecipitation and RNAi, and data mining of specific databases. Their purpose is 
to provide a primer without going into specific details, since many have been described 
previously in great detail (e.g., Golemis & Adams, 2005; Harvey & Sokolowski, 2009; 
Kathiresan et al., 2009; Navaratnam, 2009). 
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2. Experimental design and use of bait proteins 

The advances in molecular biology and protein chemistry have brought a myriad of 
techniques to the forefront to study molecule-molecule interactions as investigators seek 
to wed the relationship of their molecule of interest to various mechanisms, cycles and 
diseases. Among the techniques that have evolved for such studies are yeast two-hybrid 
screening and coimmunoprecipitation/coaffinity assays. The use of one or the other 
depends on which technique will reveal the biologically relevant answer and which might 
supply the most data for obtaining large numbers of proteins to map and build networks 
or interactomes. The yeast two-hybrid system does not need expensive hardware, such as 
a mass spectrometer, it can be done in a small laboratory, while providing high-
throughput capability, and it can provide reasonably quick insights into potential binding 
sites. However, the system is used in vitro with cDNA, so any search is only as good as the 
quality of the screened cDNA, plus any validation of findings will occur in vivo, 
eventually. Coimmunoprecipitation combined with two-dimensional electrophoresis and 
mass spectrometry: allows you to pull the proteins directly from the source, since you are 
not dependent on obtaining a cDNA library; provides insights into protein complexes and 
post-translational modifications; provides amino acid sequences for potentially unknown 
proteins. However, further studies of interacting binding sites may need the yeast two-
hybrid assay or other systems in vitro. Both systems generate false positives and 
negatives. 
Yeast two-hybrid screening packages the protein of interest as cDNA in an engineered viral 
vector or plasmid, which is used to go fishing for other proteins that are all initially dressed 
as cDNA and in their own plasmid. The former is the bait, whereas the latter, known as a 
prey, consists of a known protein or a library of unknown proteins that are, again, in the 
form of cDNA (cDNA library), encoding fragments of protein derived from a tissue or 
organism of interest. In fusion with the bait or prey cDNAs are gene sequences that 
respectively encode a eukaryotic binding and activating domain. Both bait and prey can be 
mixed together in one soup, containing yeast cells that are transformed by the plasmids, so 
that many will now contain a bait and a prey cDNA. The cDNAs are incorporated into the 
cellular machinery and expressed as protein, after which the cells are plated on an agar-
based medium. If an interaction occurs between the bait and prey proteins, the activating 
and binding domains interact to form a transcription factor that initiates a reporter gene, 
thereby changing the chromatic phenotype of the yeast for visualization. The prey cDNA, 
encoding a fragment of protein, is isolated from the yeast and sequenced to identify the 
protein involved in the interaction. Typically, this procedure involves many culture plates 
since the more plates the more likely you will capture a number of different interacting 
proteins of interest. One advantage of the yeast-two hybrid system is that you can get a 
fairly quick picture of the domains of interaction between the bait and prey proteins, since 
one of the fragments pulled from the interactions likely will be a binding site. If you do not 
begin with this technique for high-throughput analyses, you can use it on a low scale for 
studying site-directed mutagenesis in a relatively quick and reliable fashion. The downside 
for the yeast two-hybrid approach is that you will have to obtain a cDNA library from your 
tissue of interest and insert the fragments into the proper plasmid. This first step can be a 
weakness, because the screening is only as good as the library and proteins that are weakly 
or indirectly associated with your protein may be lost.  
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Fig. 1. Coimmunoprecipitation uses (1) a substrate consisting of protein A- or G-coated 
beads that bind the Fc fragment of a known antibody targeting a known antigen. (2) Once 
cells are homogenized the released protein lysate is mixed either with antibody alone or 
with antibody attached to protein-coated beads. (3) The antigen serves as bait as it brings 
many protein partners (prey). (4) This immunocomplex is eluted from the beads and 
prepared for western blotting. In high-throughput experiments, western blotting is skipped 
and the protein partners are separated on a 2-D gel and prepared for mass spectrometry (see 
Fig. 2). (5) For western blotting, an antibody is used to probe the blot for a known 
coimmunoprecipitated prey (blue). The blot can also be probed for precipitated antigen, 
since the known bait interacts with itself (red). In a reciprocal coimmunoprecipitation, the 
reverse experiment is performed, because the prey will now be used to precipitate the bait.  

Coimmunoprecipitation (Figure 1) involves the use of an antibody on a substrate, with the 
antibody directed towards an antigen (the bait protein) that brings along the prey, that is, 
interacting proteins and protein complexes. The antibody also can be directed toward the 
epitope of a protein tag in fusion with a bait protein. The advantage of the technique is that 
you can fish in a protein soup made from your tissue or organism of interest and you can 
vary the antibody/antigen bait for fishing. In addition, you can pull down both direct, 
indirect, and weak interactions as these are highly relevant to building protein networks. 
The difficulty is in getting rid of interaction artifacts, so the more artifact filtering the more 
likely the interactions will be real. To support this effort, one can rely on a combination of 
centrifugation of different cellular components and using 2-D gels to better separate protein 
partners from one another. The components in the gel are then identified using MALDI 
TOF-TOF and LC-MS/MS.  
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3. Coimmunoprecipitation 

3.1 Protein tags 
The first task in setting up an experiment is to determine whether the use of cells obtained 
from conditions in vivo or in vitro are more suitable to the biological question at hand. At 
first glance, this issue may not seem relevant; however, cells obtained from conditions in 
vitro are easily accessible, allowing more freedom in the design of bait proteins and in the 
use of tags for quantification. A major part in this decision is determining which approach is 
feasible and will answer the question in a biologically relevant manner. If a system in vitro is 
chosen, there are a number of techniques that can be used, whereas the approach is more 
limited if cells are obtained from whole organisms or tissue lysates. For experiments in vitro, 
various heterologous expression systems are readily available, such as Chinese Hamster 
Ovary (CHO) and Human Embryonic Kidney (HEK) 293 cells. The increase in accessibility 
allows the use of isotope labeling of amino acids with Stable Isotope Labeling by Amino 
Acids (SILAC), Isotope-Coded Affinity Tags (ICAT), and Isobaric Tags for Relative and 
Absolute Quantitation (iTRAQ). These tags are successfully used in proteomic experiments 
involving protein-protein interactions through the differential labeling of peptides and are 
described extensively in a recent review (Vetter et al., 2009). Here, however, we will focus on 
different types of nucleotides encoding a protein tag for bait cDNA.  
The cDNA of bait proteins transfected into a cell system can be epitope tagged, using FLAG 
(DYKDDDDK), c-myc (EQKLISEEDL), hemagglutinin (HA; YPYDVPDYA), histidine 6 
(his6; HHHHHH), vesicular stomatitis virus glycoprotein (VSV-G; YTDIEMNRLGK), simian 
virus 5 (V5; GKPIPNPLLGLDST), and herpes simplex virus (HSV; QPELAPEDPED) tags, 
among others (for additional tags see Terpe, 2003). The FLAG tag is a hydrophobic octapeptide 
(Hopp et al., 1988), recognized by different anti-FLAG monoclonal antibodies (M1, M2, and 
M5), each with different binding and recognition characteristics. Typically this tag is used at 
either the N- or C-terminal ends, as is the viral hemagglutinin coat protein or HA tag. 
However, both can be used as an epitope tag within the C- and N-terminal domains, since 
tagging at the very end of either terminal may interfere with a protein-protein interaction 
(Duzhyy et al., 2005). Moreover, if the protein is a signaling protein, a tag at the N-terminus 
will be cleaved-off the main body of the protein and thus, not resolvable on a gel. These 
cleavage sites can be less than 20 amino acids from the N-terminus. HA tags are usually 
attached in multiples of two or three in fusion with a bait protein, allowing for a better 
signal during western blotting. The c-myc tag (Evan et al., 1985) is especially popular since 
there are over 150 antibodies available from different species for this particular label. In 
comparison, the advantage of using poly-His tags is that His binds to a chelating resin 
charged with metal ions such as Ni2+, Cu2+, or Zn2+ (Noronha et al., 1999; Mateo et al., 2001). 
It can be used to not only purify proteins, but also to bind the prey in a protein lysate 
poured over a bait-bound matrix in an affinity column. Once bound, the matrix-His tag can 
be disrupted and the prey eluted. In this scenario, lysates are used from whole organisms or 
tissues dissected from the organism. 

3.2 Antibodies and tissue preparation  
The technique for capturing protein partners is to coimmunoprecipitate protein-protein 
interactions using a bait antigen bound to an antibody. A second technique is to use the 
metal ion binding His tag in fusion with a bait protein, as mentioned above. Here, we will 
focus on the antibody approach, where a major hurdle is the antibody itself. These 
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complexes can vary not only in relation to the epitope (specificity) that is targeted, but also 
in relation to the affinity, which can differ by source and/or fluctuate by lot number. The 
first rule of thumb is that that not all antibodies are created equal. Before purchasing an 
antibody, check that the targeted sequence of the epitope in your protein is not similar to the 
sequence in a different antigen. While you might assume that this comparison was made 
previously, particularly if the antibody is commercially available, a quick check never hurts, 
as sequence databases are updated on a continual basis. Gene depositories are found at the 
US National Institutes of Health at http://blast.ncbi.nlm.nih.gov/Blast.cgi, the European 
Molecular Biology Laboratory Nucleotide Sequence Database in the UK at 
http://www.ebi.ac.uk/Tools/sss/psiblast/, or the DNA Data Bank of Japan at 
http://blast.ddbj.nig.ac.jp/top-e.html. However, all three form a consortium of the 
International Nucleotide Sequence Database Collaboration, so information is exchanged on 
a daily basis. When checking, be sure to contrast species differences; however, while these 
differences are not fatal, the epitope should consist of 5 – 8 amino acids that are available for 
binding following cell/tissue denaturation. Once these sequences are checked, initial tests 
using western blots are valuable to determine if the antibody recognizes the denatured 
target.  
Prior to running a coimmunoprecipitation, a necessary step is to test the chosen 
precipitating antibody, because many commercial antibodies are not tested for this use. 
Here, the second rule of thumb is that if the antibody cannot immunoprecipitate its targeted 
antigen (bait), it will be useless in coimmunoprecipitating any partners (prey). Thus, 
checking the antibody entails doing an immunoprecipitation. The procedure is similar to a 
coimmunoprecipitation, but rather than probing the western blot for antigen partners, you 
probe for the immunoprecipitated antigen. Once verified, the antibody is suitable for use in 
a coimmunoprecipitation. Additionally, immunoprecipitations are useful in other 
applications, for example, as a control with which to compare the coimmunoprecipitated 
species. In this scenario, you must be working with already identified proteins. As an 
example, use a newly discovered partner (prey), from your high-throughput experiment to 
coimmunoprecipitate the bait, while also immunoprecipitating the bait as control. Both co- 
and immunoprecipitated species should have the same weight. This step is also referred to 
as a reciprocal coimmunoprecipitation (discussed in section 3.2), since it validates the 
original bait/prey interaction. Finally, a third use for immunoprecipitation is to increase the 
quantity of the antigen for western blotting and Enhanced Chemiluminescent (ECL) 
visualization. This technique is especially useful in pulling down lowly expressed proteins. 
These techniques are useful for validation following the initial high-throughput 
experiments.  

3.3 Lysate preparation and preclearing 
Once an antibody is chosen and tested, preparation of the cells/tissues for 
coimmunoprecipitation can begin (Figure 1). A step-by-step procedure was presented 
previously (Harvey and Sokolowski, 2009), so here, we will just touch on the salient points 
and limitations. The initial preparation of the tissues for coimmunoprecipitation is critical as 
the quality of the protein lysate is important. The goal is to disrupt the tissue sufficiently 
without disrupting protein-protein interactions. Thus, lysis buffers contain anywhere from 
120 – 1000 mM NaCl (less to more disruptive) as well as detergents to release hydrophobic-
hydrophylic interactions. Among the reagents that can disrupt protein-protein interactions 
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are ionic detergents, such as sodium Deoxycholate (DOC) and Sodium Dodecyl Sulfate 
(SDS). However, nonionic detergents, such as Triton X-100, Tween20, Octyl -D-Glucoside, 
N-dodecyl-β-D-Maltoside, Brij, Cymal, Digitonin, and NP-40, are useful in maintaining 
interactions. Octyl -D-glucoside is especially helpful for releasing protein partners from 
lipid rafts, whereas n-dodecyl-β-D-maltoside isolates hydrophobic membrane proteins and 
preserves their activity. The isolation and separation of membrane proteins on a 2-D gel can 
be especially challenging. For example, our own initial studies, to cleanly separate BK 
channel partners from the membrane fraction on a 2-D gel, revealed amidosulfobetaine-14 
(ASB-14), a zwitterionic detergent, as the best candidate relative to CHAPS (zwitterionic), 
octyl β-glucoside, and n-dodecyl β-D-maltopyranoside. 
Once the tissue is dissected on ice and placed in a cold buffer with the proper protease and 
phosphatase inhibitors, any physical disruption is accomplished with pre-cooled 
equipment, on ice, and for short durations. These tissue perturbations include: mechanical 
disruption by grinding with a blade; liquid homogenization, by squeezing through a narrow 
space, as with a French press or Dounce; sonication, by using a vibrating probe to produce 
bubbles that burst and cause a sonic wave; or freeze/thaw, which bursts membranes via ice 
crystals. For minute tissues, such as the cochlea, use a 3 mm size probe to disrupt cells for 30 
sec three times with one-minute intervals for cool down. Also, a simple mortar and pestle 
can be used and obtained in many different sizes. However, there is an art to the process, 
since you will not want to over-sonicate/homogenize. Such errors are reflected in mass 
spectroscopy results, where cytoplasmic proteins appear in the membrane fraction and vice 
versa. Again, as a reminder, the tube containing the tissues is kept on ice and any ensuing 
centrifugation should be done in either a refrigerator or a cold room.  
Lysis buffers can be relatively standardized or they can vary from lab to lab with everyone 
swearing that theirs works the best. RIPA and Tris-HCl are commonly used lysis buffers 
and their ingredients can be easily found on the web with other types of buffers at sites such 
as http://www.abcam.com/index.html?pageconfig=resource&rid=11379#A1. However, 
some buffers contain metal chelating agents such as EGTA or EDTA. These chelators have 
the ability to bind or sequester metal ions, keeping them in solution and decreasing their 
activity. For example, EGTA sequesters Ca2+ and Mg2+, but has a higher affinity for Ca2+ 

than Mg2+ ions, whereas EDTA binds Fe3+, Ca2+, Pb2+, Co3+, Mn2+, and Mg2+. The choice as to 
whether you add these chelators can depend on whether the protein-protein interactions 
you are interested in are metal ion dependent. The real differences come into play when 
deciding on which protease or phosphatase inhibitors to use (Table 1). Concentrations of 
these inhibitors can vary and may depend on, for example, whether or not you are 
interested in examining phosphorylated proteins. Protease/phosphatase inhibitors should 
always be mixed on the day of the experiment, since their stability varies quite a bit. 
Pepstatin A at a working solution of 1 µg/mL is stable for about one day, whereas the stock 
solution (100 µg/mL) is stable for several months. Leupeptin at 1-2 µg/mL is stable for a 
few hours, whereas the stock solution is stable for up to six months. Aprotinin, on the other 
hand is stable for about a week at 4oC in a solution of pH 7 at a concentration of 
approximately 0.5-2 µg/mL. Moreover, microcystin-LR may be preferred in place of okadaic 
acid, as an inhibitor of protein phosphatases PP1 and PP2A, since it is more potent. The 
downside of using this inhibitor is that in the U.S., microcystin is on the government list of 
monitored reagents and, also, it is quite expensive.  
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Table 1. Protease and phosphatase inhibitors that can be used in a cocktail mixed with a 
lysis buffer for protein extraction.  
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In order to obtain the cleanest and best protein separation on your 2-D gel, a useful step is to 
separate the lysate into different cellular components via centrifugation and prior to 
preclearing. This step is practical, especially for high-throughput experiments involving 
mass spectrometry (Kathiresan et al., 2009; Harvey & Sokolowski, 2009). After clearing 
debris, nuclei, etc., separate the membrane fraction from other soluble proteins using 
ultracentrifugation, by spinning the sample at 100k x g for about an hour at 4oC. The pellet 
will contain membrane from the plasmalemma, mitochondrion, and endoplasmic reticulum, 
while the supernatant will contain any remaining soluble proteins. To obtain additional 
separation of organelles and various other cellular components, a necessary step is density 
gradient centrifugation (Huber et al., 2003). However, the initial separation of membrane 
and cytosolic components is useful for obtaining proteins that have undergone 
phosphorylation or any other changes resulting from a cell’s response to cycle, 
developmental stage, drug response, environment, disease, etc.  
Prior to preclearing and coimmunoprecipitation, a choice is made with regard to the type of 
beads to be used as the substrate for binding the antibody. These substrates include Protein 
A- or G-coated agarose, sepharose or magnetic beads. Proteins A and G bind 
immunoglobulins in the Fc regions of an antibody, thereby, leaving the Fab region free for 
antigen binding. Protein A, originally derived from Staphylococcus aureus, binds 
immunoglobulins from a number of species and has a strong affinity for mouse IgG2a, 2b, 3, 
and rabbit IgG. Protein G was originally derived from Group G streptococcus and tends to 
have an affinity for a greater number of immunoglobulins across a broader range of species 
and subclasses of IgG. Its affinity is strong for polyclonals made from cow, horse, sheep, and 
mouse IgG1. Also, Protein G has less affinity for albumin, thereby decreasing background 
and providing cleaner preparations. Protein A and G binding affinities for various species 
can be found at http://www.millipore.com/immunodetection /id3/affinitypurification. 
The question of agarose/sepharose or magnetic beads is a matter of choice, since arguments 
can be made for either one. Magnetic beads are smaller at 1 – 4 µm and provide more 
surface area per volume, fewer handling steps, faster protocol time, greater sample 
recovery, and less risk of bead inclusion in the sample. However, you need a magnetic 
separator. In the long run, there is likely not that much difference and the outcome will lie in 
performing the necessary pilot experiments. 
Once the tissue is cleared of debris and nuclei, separated into different cellular components, 
and a choice of beads is made, begin the preclearing step. Preclearing with beads involves 
reducing the proportion of proteins that may bind non-specifically to the agarose/sepharose 
beads that are used in the coimmunoprecipitation. For high-throughput experiments, where 
western blots are not used, it is essential. However, if the endgame is a western blot and 
ECL, preclear if the background masks your protein species. One limitation of preclearing is 
that you may lose signal, which is especially disadvantageous if the expression of your 
protein is low. However, signal loss can be traced by saving non-bound components during 
the procedure. For preclearing, the lysate is mixed with a small volume of coated beads so 
that any contaminating elements that increase background noise are allowed to bind over 
time, usually over 30 min at 4oC. The resultant complex of “sticky” proteins and beads are 
discarded (or saved for testing signal loss) after centrifugation and the supernatant is 
processed for coimmunoprecipitation. Preclearing is not to be confused with a bead control. 
Here, the cleared lysate is mixed with beads in the absence of antibody to form a non-
immunocomplex, which is then processed and fractionated on a gel. An additional 
 



 
Selected Works in Bioinformatics 

 

148 

 
Fig. 2. Schematic of a high-throughput proteome experiment using coimmunoprecipitation, 
two-dimensional gels, and mass spectrometry. Initially, proteins are solubilized and 
separated by ultracentrifugation into membrane and cytoplasmic fractions (blue and 
yellow), which then are divided into two separate aliquots. Anti-bait antibody (Ab) with 
protein G beads (red tubes) is used to coimmunoprecipitate putative protein partners 
obtained from an organism or tissue lysate. The different subcellular fractions are probed 
with an antibody to a specific protein and the immunocomplex captured with Protein G-
coated beads. The resultant immunocomplexes are eluted, fractionated on two-dimensional 
gels, and analyzed using LC-MS/MS. Control samples consist of running membrane and 
cytoplasmic fractions: in the absence of antibody and beads (total proteome; green tubes); 
with beads alone (purple tubes); or with a nonspecific antibody and beads (purple tubes). 

approach to preclearing, but which can also be used as a negative control, is to use a non-
specific antibody. The antibody must be isotype specific, when using a monoclonal 
antibody, or source specific, when using a polyclonal antibody for coimmunoprecipitation. 
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For example, in the event that the coimmunoprecipitating antibody is a mouse monoclonal 
IgG1, then use a nonspecific mouse monoclonal IgG1. If, on the other hand, the antibody to 
be used is a rabbit polyclonal, use a non-specific rabbit polyclonal antibody. When used as a 
control, mix the precleared lysate with the non-specific antibody and beads and process for 
gel fractionation. Finally, empirically determine how much antibody to add to the lysate 
fraction or to the beads, by determining the signal to noise in your result. A good starting 
point is to begin with 5 µg of antibody and work up or down in concentration from there.  
The cells are now ready for coimmunoprecipitation for high-throughput analyses using 2-D 
gels (Figure 2). Control experiments consist of: any sticky proteins adhering to the beads 
(non-immunocomplexed protein), any proteins obtained using a non-specific antibody, and 
finally all proteins from the entire proteome of the tissue/organism. While controls may 
take more samples, they are of value for comparison purposes and troubleshooting, and for 
acceptance into high impact journals. The gel showing the total proteome is important, since 
it will provide an overall pattern of protein spots with which to compare the gel containing 
the immunocomplexed proteins. You will likely see some similar spot patterns between the 
gels if the separation is of a good quality. One question that will arise is whether to first bind 
the antibody to the beads or bind the antibody to the antigen in the lysate and then to the 
beads. One argument for binding the antibody to the beads first is that, since the beads are 
already covered with antibody, there will be a decrease in contaminant binding, and thus, a 
decrease in background. Antibody can be covalently bound to beads using Dimethyl 
Pimelimidate (DMP) Disuccinimidyl Glutarate (DSG), Disuccinimidyl Suberate (DSS), or 
Disuccinimidyl Tartrate (DST). Arguments against crosslinking include, the buildup of 
aggregates, antibodies such as monoclonals may lose their affinity, or the antibody cross-
links to the beads in the incorrect position causing hindrance to antigen binding. 

3.4 Fractionation and gel staining 
Once both immunocomplexed and non-immunocomplexed beads are washed, perform the 
elution step using equal volumes of IEF sample and elution buffers, since the proteins are 
fractionated in two dimensions. At this point there are various nuances in terms of 
technique for running a 2-D gel. Among these is a step-by-step description by Kathiresan et 
al., (2009). Here, we will suggest some of the initial troubleshooting that may be necessary 
before and/or after running a full-fledged experiment. If little is known about the proteome 
of the tissue in your experiment, it will be of value to use an Immobilized pH Gradient (IPG) 
strip with a broad pH range (e.g., pH 3 - 10). Moreover, rather than initially using strips of 
18 to 24 cm, which give a better resolution, use a 7 cm strip to get a quick representation of 
the pI ranges that you will be working with. Also, remember that the protein volume you 
can load is related to the size of the IPG strip, so that 7, 11, 17, 18, and 24 cm strips require 
volumes of 125, 185, 300, 325, and 450 µL, respectively. After separation in the first 
dimension, proteins are fractionated according to weight in the second dimension at which 
point the gel is prepared for staining. 
There are several staining methods available, assuming that a CyDye was not used, since 
this step is accomplished prior to running the gel. The choice of stain is dependent on 
whether you are interested in searching for the low hanging fruit, that is, proteins that are 
highly expressed, or you may wish to increase staining sensitivity to detect as many protein 
partners as possible. Colorimetric stains include Coomassie Brilliant Blue, which will suffice 
for the former choice, since this stain will detect in-gel protein concentrations as low as 10 
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ng. For more inclusive resolution of proteins you can use silver staining, which detects 
protein concentrations less than 0.25 ng. For a detection range that lies between these two 
stains, fluorescent dyes are available that detect 0.25 – 2 ng. However, all the stains have 
their advantages and limitations. Coomassie Blue has less sensitivity, but is probably the 
most compatible stain for mass spectrometry. Silver staining has greater sensitivity but is 
less compatible with mass spectrometry, because, as with Coomassie Blue, the protein must 
be destained prior to tryptic digestion. Since formaldehyde is part of the silver staining 
process, cross-linking of the protein occurs (Richert et al., 2004), thereby causing problems 
with protein extraction from the gel and interference with mass spectrometry. A few 
techniques have been suggested to circumvent this problem, including ammoniacal silver 
staining (Richert et al., 2004; Chevallet et al., 2006). Moreover, some vendors (e.g., Thermo 
Scientific Pierce) optimize their reagents to make silver staining more compatible for mass 
spectrometry. However, silver staining still remains problematic, with its poor 
reproducibility and a nonlinear dynamic range, when measuring staining intensity relative 
to the amount of protein. There are many fluorescent stains, including those of a non-
covalent variety such as SYPRO Orange, Red, Ruby, and Tangerine (Invitrogen, Carlsbad, 
CA, USA), ruthenium II, Deep Purple (GE Healthcare, Piscataway, NJ, USA), Krypton 
(Thermo Scientific, Inc., Rockford, IL, USA), and Oriole (Biorad, Hercules, CA, USA). The 
advantages are sensitivity, a greater dynamic range, and compatibility with mass 
spectrometry. Disadvantages lie primarily with cost, because of the necessity for extensive 
hardware for detection and quantification, the loss of signal with exposure to light, and the 
potential for masking certain peptides. For example, Deep Purple and SYPRO Ruby begin to 
lose their fluorescence after two minutes of exposure to UV transillumination, so that by 19 
minutes they have lost 83% and 44% of their fluorescence, respectively (Smejkal et al., 2004). 
SYPRO Ruby may also inhibit identification of cysteine- and tryptophan-containing 
peptides (Ball & Karuso, 2007). In addition, not all fluorescent stains are compatible with the 
various gel types that are used to fractionate proteins for LC-MS/MS. Ruthenium II, which 
is much cheaper than SYPRO stains, causes increased background staining in Bis-Tris gels 
relative to Tris-Glycine gels (Moebius et al., 2007). These are all factors to keep in mind as 
part of your experimental design. Finally, once the gel is stained, any vertical streaking of 
protein is likely the result of insufficient equilibration or problems with the buffer solution, 
whereas horizontal streaking may be the result of incomplete solubilization, impurities, 
improper detergent, or an isoelectric focusing time that is too long or too short. With the 
completion of staining, the gel will need to be destained prior to removal of gel spots either 
manually or with a robotic arm. 

4. Verification of protein partners 

4.1 Manual verification of peptides  
While the specifics of understanding how the data are obtained and analyzed are beyond 
the scope of this chapter, a quick review of some highlights are useful before describing 
potential experiments to validate your interactions. Once tandem mass spectrometry is 
completed you will obtain data derived from database search engines such as MASCOT, 
Seaquest, and X! Tandem. Search engines such as MASCOT generate scores as well as a 
compilation of spectral data. Scores above 60 can be considered valid for protein 
identification, assuming other parameters such as spectral data are in order. However, one 
may want to be conservative, especially when examining potential new partners. 
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Regardless, scores should not be taken at face value without analyzing the fragmentation 
spectra for each identified peptide, since you can have good scores and bad spectral data as 
well as bad scores and good spectral data. Personnel from your mass spectrometry core 
facility can assist in these analyses, however, you should familiarize yourself with how the 
ion spectra are generated and identified for your own understanding. A good starting point 
in comprehending spectral data is a tutorial at proteome software.com that comes in the 
form of a short presentation, http://www.proteomesoftware.com /Proteome_ 
software_pro_protein_ id.html. In addition, there are many other sources of value in 
understanding the mechanics of mass spectrometry-based proteomics, including light 
reading in review articles (Aebersold and Mann, 2003), as well as more intense reading in 
specialized books (Gross, 2004). Also, before deciding on a core facility to analyze your 
precious data, assuming you have a choice, you may want to give this sobering article a 
quick read (Bell et al., 2009). This paper will likely push your choice towards a facility where 
the personnel have a great amount of experience and the search engines are continually 
maintained and up-to-date. Finally, the data should be analyzed for false positive rates, 
since some proteomics journals now require these analyses, including Molecular and Cellular 
Proteomics, which published standards in 2005 (Bradshaw, 2005).  

4.2 Reciprocal coimmunoprecipitation 
Once you have obtained the results, showing the putative protein-protein interactions, you 
can use various means to begin assessing their validity using bioinformatics and different 
experimental procedures. Here, we will discuss some of the methods for experimentally 
verifying interactions as well as assessing the potential functions of these interactions. The 
methods to verify are many and can depend on the protein of interest as well as the 
experimental question. However, one of the first and relatively easy steps for verification, 
considering that you’ve just run a two-dimensional gel, is to perform a reciprocal 
coimmunoprecipitation. Here, the goal is to coimmunoprecipitate the protein that was 
originally used as bait (antigen) by using the newfound prey (protein partner). In essence, 
there is a role reversal, so that the former bait is now prey and vice-versa. The means to 
accomplish this procedure are similar to those used for a coimmunoprecipitation using 
western blotting. Once you step into the realm of probing the results of a 
coimmunoprecipitation experiment with an antibody in a western blot, you have to consider 
the IgG artifacts that may appear on your film. These artifacts are the result of the presence 
of light (~25 kDa) and heavy (~50 kDa) immunoglobulin fragments that are detected when 
using an antibody from the same species for both the immunoprecipitation 
/coimmunoprecipitation pull-down and the western blot. The secondary antibody will 
recognize both IgG chains, since these are eluted from the beads along with the antibody 
and fractionated on the gel. The consequence is that the antigen will be masked if it has a 
weight similar to either IgG. Moreover, if monoclonals are used to both pull down and 
probe the blot, the secondary recognizes the 25 kDa band; if polyclonals are used for both, 
the 50 kDa band will appear as artifact. A problematic example is the use of a rabbit 
polyclonal antibody for both the immunoprecipitation and the western blot. To circumvent 
this issue, you can use antibodies from different species or use a secondary antibody 
consisting of HRP bound to Protein A or G. An HRP conjugated to either of these proteins 
will detect their non-denatured forms but not their denatured forms (Lal et al., 2005). A 
third solution is to use secondary antibodies that only recognize the light or heavy chain 
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IgGs (Jackson Immunoresearch Laboratories, Inc., Westgrove PA, USA). Thus, if your 
protein of interest lies in the 45 - 55 kDa range, you would use a secondary that recognizes 
only the light chain IgG and vice versa, if your protein lies in the 20 to 30 kDa range. 
However, one assumption that should not be made in running the reciprocal 
coimmunoprecipitation is that all the parameters in washing and stringencies are the same 
as for the original coimmunoprecipitation. We find that at times these variables have to be 
tweaked slightly differently. However, with practice these issues are usually fixed relatively 
quickly.  

4.3 RNAi and overexpression 
A method of verification that can clarify the function of your newly discovered interactions 
is the use of RNAi in a heterologous expression system. This approach is especially useful 
for proteins that lend themselves well to this sort of system, such as ion channels. There are 
several different types of cells to use, including HEK 293 and CHO cells, and if cell polarity 
is of concern, Madin-Darby Canine Kidney (MDCK) epithelial cells. These expression 
systems provide a vehicle for, not only expressing your proteins, but also as a means to 
silence the protein endogenously.  
 

 
Fig. 3. Experiments, using cDNAs, are conducted to probe the function of protein-protein 
interactions when the prey protein is silenced in a heterologous expression system. (1) The 
original bait protein, in the form of an HA-tagged cDNA, is transfected with (2) siRNAs 
targeting specific nucleotides of the newly- discovered protein partner, or with scrambled 
RNAs (scRNAs; control) containing nonsense sequences. In this scenario, the (3) prey 
protein is endogenous to the expression system. Plates for each treatment are prepared in 
triplicate. (4) Cells from each treatment are scraped, homogenized and prepared for western 
blotting. (5) The resultant blot is probed for expression of the HA-tagged protein in both 
treatment and control conditions.  
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In order to accomplish these experiments, you will need the gene or genes that encode one 
or both of your proteins, that is, the bait and the prey. If the cDNA comes from either a 
private source or a vendor, do not assume that the construct you receive contains cDNA 
with a correct sequence. Be sure that it was sequenced very recently before use, as in, after 
the last amplification, because it is not uncommon to obtain constructs from either source 
only to discover a mutation during the course of your study, when it’s too late. Once 
sequenced, tag the cDNA on either the C- or N-terminus with one of the specified tags 
discussed previously. We typically find that the antibodies to the HA and FLAG tags work 
quite well in these experiments. However, you have to keep in mind that the tag itself may 
interfere with the interaction. If the coimmunoprecipitation fails, there is no need to panic, 
because you can just place the tag at the other end. Also, remember that if the tag is placed 
on the N-terminal end of a signaling protein, you may lose your tag. Inserting the tag farther 
into the construct resolves this issue.  
The decision then comes down to, when to silence and when to over-express, once all the 
necessary cDNA constructs are in order. In our work, we find that inserting and over-
expressing the cDNA, encoding the original bait protein, and silencing the partner (prey) 
with siRNAs endogenously, works the best in our RNAi experiments (Figure 3). This 
approach entails determining that the partner, pulled from the high-throughput study, is 
expressed endogenously in your heterologous system. If so, check that the sequences of the 
siRNAs match those of the endogenous protein found in the heterologous cells. Be sure to 
have at least three to four siRNAs, targeting 18 – 23 bases of the sequence in different 
regions that are approximately 70 – 100 bases from either the 5’ or 3’ ends. Search for AA 
dinucleotides, since siRNAs with an overhanging UU pair at the 3’ end is the most effective, 
although other dinucleotides are effective to some extent (Elbashir et al., 2001; Elbashir et al., 
2002). Avoid runs of G or C, since these are cut by RNAses. In addition, the GC content 
should not exceed 30 – 50% because the siRNA becomes less active. BLAST siRNA 
sequences to avoid knockdown of genes with similar sequences.  
Once all materials are ready, transfect the cells with the siRNAs and the over-expressed 
protein (Figure 3). A fluorescent tag such as Cerulean can be used to check for the earliest 
expression of protein in live cells. We find that proteins are expressed within the first two 
hours, with transfection reagents such as Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), 
which can be removed after four hours of transfection. However, the efficiency of transfection 
may vary from cell type to cell type, so a test of comparable products is needed to find the 
most efficient one. Anywhere from one to all of the siRNAs can be added in an equivalent 
ratio. Following transfection, cells are allowed to grow for approximately 48 hours at which 
time they are processed for protein quantification. Run triplicate plates along with a negative 
control, such as cells treated with scrambled RNA and over-expressed protein. Experiments 
are repeated a total of three times. Band densities are measured, averaged, and analyzed for 
statistical significance by comparing experimental versus control groups. In order to control 
for protein loading, perform a protein assay and verify by analyzing a control protein on the 
same blot as experimental and control treatments (e.g., -actin, GAPDH).  
In a similar manner, over-expression of the partner can be managed through transfection of 
heterologous expression systems (Figure 4). Again, the bait protein can be measured, but 
this time in response to over-expressing the prey as opposed to silencing. Transfect both 
constructs in a 1:1 ratio and use a control, consisting of empty vector or vector with the 
construct in reverse sequence along with the construct carrying the prey sequence. This 
procedure will clarify if the addition of another vector dilutes the expression of the prey 
protein. Densitometry measurements are made as before and analyzed statistically.  
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In summary, the search for mechanisms that regulate the many proteins in different cell 
systems can be tackled using a variety of different techniques. The results can provide you 
with a bounty of data that can be verified and used to mine many different databases. The 
outcomes from these experiments will provide you with new and fascinating insights that, 
heretofore, you may not have thought about. The critical issues are that you will need to obtain 
a clear understanding of what is occurring to the proteins at different stages of the experiment. 
This understanding will allow you to obtain clean representations of the proteins to be 
assessed with fewer inherent artifacts. Once mass spectrometry is completed, the data can then 
be used to mine various databases in order to fit and expand your data into an interactome.  
 

 
Fig. 4. Experiments, using cDNAs, are conducted to probe the function of protein-protein 
interactions when the prey is over-expressed in a heterologous expression system. (1) The 
original bait with the (2) newly-discovered prey or the bait with plasmid containing the 
reverse sequence of the prey (control) are cotransfected into (3) CHO cells. (4) Cells are 
collected and prepared for western blotting, where expression of the bait protein is probed 
(5) for both treatment and control conditions.  

5. Bioinformatics 

5.1 Comparison of high-throughput data with existing data 
Once the initial experiments are completed, the lab worker will often wish to analyze the data 
by comparison to known interactions already existing in molecular interaction databases. 
These resources exist to collate and curate experimental data from laboratories around the 
world. Initially, interaction databases were established in isolation and often performed 
redundant curation of the same, high-visibility papers to their own standards, subsequently 
releasing the data in their own proprietary formats. However, more interaction data is 
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published in any one calendar month than can be captured by these resources collectively, and 
no single database can claim to have complete coverage of the literature. In order to approach 
a complete interactome for the organism or process of interest, the user has always had to 
combine data from multiple resources. This was well nigh impossible prior to 2004, as the 
different data formats, required separate parsers to be written for each data source. This 
approach began to change with the release of the first HUPO-PSI standard representation of 
interaction data. Nowadays, two related formats exist – PSI-MI XML2.5 and MITAB2.5 
(Kerrien et al., 2007), which are supported by both the majority of interaction databases and 
also by related visualization and analytical resources. These formats have enabled consistent 
data capture by multiple resources, with the choice of XML or tab-deliminated files often 
driven by either the complexity of data that the user wishes to harvest, or the amount of 
bioinformatic support available to them. Controlled vocabularies now make the terminology 
used to annotate these data consistent across the many data resources. 
One major advantage of multiple resources sharing the same data format is that it is now 
possible to simultaneously access multiple resources with a single query, cluster the results, 
and visualize these in a single graph. A PSI Common Query InterfaCe (PSICQUIC) was 
developed that allows software clients to interact with multiple services and is based on the 
existing PSI MI file formats and the new Molecular Interaction Query Language (MIQL) 
(Aranda et al., in preparation). MIQL is based on standard Lucene syntax 
(http://lucene.apache.org/) and offers single word or phrase queries (abl1 AND “pull 
down”), search in specific data attributes/columns (abl1 AND species:human), wildcards 
(abl*), and logical operators. At the time of writing, 16 data providers were providing 
PSICQUIC servers, with a total of 16 million interactions available to query. PSICQUIC lays 
no constraint on data type or quality and much of what is available is also redundant, in that 
databases, which do not have their own curation team, will import information from those 
that do. To address this issue, several of the major databases have come together to 
synchronize their curation rules and data release through the IMEx Consortium 
(www.imexconsortium.org). This consortium allows the user to access and download a non-
redundant, consistently annotated set of data, again using a PSICQUIC client to access 
appropriately tagged records (Orchard et al. in preparation). 

5.2 Data resources 
A number of databases exist, many of which have a bias in their curation strategy, either 
towards particular organisms or cellular processes. A brief summary of a number of these 
resources is given below, a more complete but less detailed list can be obtained from 
Pathguide (www.pathguide.org/). All the databases listed make their data available both 
through a dedicated website and also from their respective ftp sites in one or both of the PSI 
formats. 
IntAct (www.ebi.ac.uk/intact) – no species or process bias, collects data from all organisms. 
Mainly contains protein-protein interactions but also annotates protein-small molecule, 
protein-nucleic acid. Interactions are derived from literature curation or direct user 
submissions and are freely available. Database and associated tools are open-source and 
available for download. IntAct provides a PSICQUIC service and is a full member of IMEx. 
MINT (http://mint.bio.uniroma2.it/mint/) - no species or process bias, collects data from 
all organisms. Focuses on experimentally verified protein-protein interactions mined from 
the scientific literature. MINT provides a PSICQUIC service and is a full member of IMEx. 
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DIP (http://dip.doe-mbi.ucla.edu/dip) - no species or process bias, collects data from all 
organisms. Catalogs experimentally determined protein-protein interactions between 
proteins. The data are both manually curated and also automatically, using computational 
approaches that utilize knowledge about the protein-protein interaction networks extracted 
from the most reliable, core subset of the DIP data. DIP provides a PSICQUIC service and is 
a full member of IMEx. 
MatrixDB (http://matrixdb.ibcp.fr) - focuses on interactions established by extracellular 
proteins and polysaccharides, mainly in human and mouse. Reports interactions of proteins, 
individual polypeptide chains or multimers (permanent complexes) and carbohydrates. 
MatrixDB provides a PSICQUIC service and is a full member of IMEx. 
InnateDB (www.innatedb.ca/)- a database of the genes, proteins, experimentally-verified 
interactions and signaling pathways involved in the innate immune response of humans 
and mice to microbial infection. Integrates known interactions and pathways from major 
public databases together with manually-curated data. InnateDB provides a PSICQUIC 
service and is a full member of IMEx. 
MPIDB (http://jcvi.org/mpidb/) - collects physical microbial interactions manually 
curated from the literature or imported from other databases. MPIDB provides a PSICQUIC 
service and is a full member of IMEx. 
BioGrid (http://thebiogrid.org/) – a resource of protein–protein and genetic interactions 
for many model organism species. BioGRID provides a PSICQUIC service and is an 
observer member of IMEx. 
HPRD (www.hprd.org/) – a database of human interactions, mixed species interactions 
(e.g. human-mouse) are modeled to human. Commercial entities have to pay a fee to use the 
data, under a licensing arrangement. 

5.3 Data visualization 
Once the user has downloaded their required data from one or all of the listed resources, the 
next step is to combine the networks then import and overlay your own data. The tool of 
choice for this exercise is most commonly Cytoscape (www.cytoscape.org), a free software 
package for visualizing, modeling and analyzing molecular and genetic interaction 
networks. In Cytoscape, nodes representing biological entities, such as proteins or genes, are 
connected with edges representing pairwise interactions, such as experimentally determined 
protein–protein interactions. Nodes and edges can have associated data attributes 
describing properties of the protein or interaction. Cytoscape allows users to extend its 
functionality by creating or downloading additional software modules known as ‘plugins’. 
These plugins provide additional functionality in areas such as network data query, 
network data integration and filtering, attribute-directed network layout, Gene Ontology 
(GO) enrichment analysis and network motif functional module, protein complex or domain 
interaction detection. 
Network data can be imported into Cytoscape is several formats, including those of the PSI-
MI. To merge files in Cytoscape, the gene or protein identifier in the file must exactly match 
the corresponding Cytoscape node ID (or other Cytoscape attribute that has been previously 
loaded). If no matching identifiers are present, the situation can be corrected by loading an 
additional identifier into Cytoscape as a new node attribute. The ID mapping service 
supplied by UniProt (www.uniprot.org/) or by PICR (www.ebi.ac.uk/Tools/picr/) are 
recommended to achieve this correction. The Advanced Network Merge, a core Cytoscape 
plugin will allow network merging on the click of a single button. 
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Fig. 5. An interaction network as viewed in Cytoscape. 

5.4 Interolog mapping 
Large-scale PPI networks are only available for a limited number of model organisms, therefore, 
groups working on less well-studied organisms have to rely on network inference using the 
interolog concept originally introduced by Walhout et al. (2000). This concept combines known 
PPIs from one or more source species and orthology relationships between the source and 
target species to predict PPIs in the target species. There are a number of resources available 
which perform the orthology mapping Inparanoid (http://inparanoid.sbc. su.se/cgi-
bin/index.cgi) and Compara ( www.ensembl.org /info/docs/api/ compara/index.html) being 
probably the best known. Few tools exist for interolog mapping, however, two database 
resources exist in which this exercise has been pre-computed for the user; STRING 
(http://string-db.org/) transfers associations/interactions between several hundred organisms 
and InteroPORC (http://biodev.extra.cea.fr/interoporc/) for the fully sequenced organisms 
described in the Integr8 database (www.ebi.ac.uk/integr8). Both resources make the data 
available in PSI format and both have a PSICQUIC server. Additionally, the InteroPORC 
software is freely available for in-house use (Michaut et al. 2008). 

6. Conclusions  

The data generated from experiments that examine genes and proteins has increased 
logarithmically over the last 20 years, largely driven by recent advances in high-throughput 
technologies that examine proteins individually, as well as in complexes. High-throughput 
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protein studies that combine coimmunoprecipitations with 2-D gels have increased as a result 
of the higher quality of data obtained from mass spectrometry. The advent of these technologies 
has helped to fuel a need for the formation of many curated databases, such as those that 
capture molecular interactions. These molecular interactions databases are increasing their 
usefulness to the community by making their datasets available in a single, unified format. In 
addition, many are also linked in a unifying organization, such as the IMEx Consortium, which 
is ensuring that the user can download a non-redundant set of consistently annotated data. This 
means that the user now has a single point of entry from which to download data, and an 
increasing number of tools with which to subsequently analyze those data. 
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1. Introduction  

Biological processes almost always involve protein-protein interactions. Understanding the 
function of protein-protein interactions requires knowledge of the structure of the 
corresponding protein-protein complexes. The experimental structure determination by X-
ray crystallography requires purification of large amounts of proteins. In addition, it is 
necessary to crystallize the proteins in the native complex which may not be feasible for all 
known interacting proteins. Multi-protein complexes mediate many cellular functions and 
are in a dynamic equilibrium with the isolated components or sub-complexes (Gavin et al., 
2002; Rual et al., 2005). In particular, complexes of weakly or transiently interacting protein 
partners are often not stable enough to allow experimental structure determination at high 
(atomic) resolution. Experimental studies on detecting all protein-protein interactions in a 
cell indicate numerous possible interactions ranging from few to several hundred possible 
binding partners for one protein (Gavin et al., 2002; Rual et al., 2005). A full understanding 
of cellular functions requires structural knowledge of all these interactions. In the 
foreseeable future it will not be possible to determine the structure of all detected protein-
protein interactions experimentally at high resolution. Structural modeling and structure 
prediction is therefore of increasing importance to obtain at least realistic structural models 
of complexes (Bonvin, 2006; Andrusier et al., 2008; Vajda & Kozakov, 2009; Zacharias, 2010). 
If the structure of the isolated protein partners or of closely related proteins is available it is 
possible to use a variety of computational docking methods to generate putative complex 
structures.  
The driving force for the protein binding process corresponds to the associated change in 
free energy which depends on the structural and physicochemical properties of the protein 
partners. The “lock and key” concept of binding proposed by E. Fischer (Fischer, 1894) 
emphasizes the importance of optimal sterical complementarity at binding interfaces as a 
decisive factor to achieve high affinity and specificity. However, proteins and other 
interacting biomolecules are not rigid but can undergo a variety of motions even at 
physiological temperatures. The induced fit concept has evolved based on the observation 
that binding can result in significant conformational changes of partner molecules 
(Koshland, 1958). Within this concept protein partners induce conformational changes 
during the binding process that are required for specific complex formation. It should be 
emphasized, that in principle all possible molecular recognition processes require a certain 
degree of conformational adaptation. In recent years extensions of the induced-fit concept, 
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based on ideas from statistical physics, emerged. A pre-existing ensemble of several inter-
convertible conformational states being in equilibrium has been postulated (Tsai et al., 1999). 
Among these states are structures close to the bound and unbound forms. Binding of a 
partner molecule to the bound form shifts the equilibrium towards the bound form. Since 
every conformation is, in principle, accessible albeit with a potentially low statistical weight 
already in the unbound state the original induced fit concept is a special case of ensemble 
selection where only the presence of a ligand gives rise to an appreciable concentration of 
the bound partner structure.  
Progress in protein-protein docking prediction methods has been monitored with the help 
of the community wide Critical Assessment of Predicted Interactions (CAPRI) experiment 
(Janin et al., 2003; Lensink et al., 2007). In this challenge participating groups test the 
performance of docking methods in blind predictions of protein-protein complex structures. 
The results of the CAPRI challenge indicate that for protein partners with minor 
conformational differences between unbound and bound conformation and some 
experimental hints on the interaction region often quite accurate predictions of complex 
structures are possible (Bonvin, 2006; Andrusier et al., 2008; Zacharias, 2010). However, the 
docking problem becomes much more difficult when protein partners undergo significant 
conformational changes upon association or for protein structures based on comparative 
modeling (Andrusier et al., 2008; Zacharias, 2010). The magnitude of possible 
conformational changes during association can range from local alterations of side chain 
conformations to global changes of domain geometries and can even involve refolding of 
protein segments upon association. Computational approaches to realistically predict 
protein-protein binding geometries need to account for such conformational changes. Often, 
protein-protein complex structures obtained from protein-protein docking but also in case of 
comparative modeling are of limited accuracy and require further structural refinement to 
achieve the generation of a realistic structural model. Since rigid docking is computationally 
much faster compared to flexible docking, the majority of current protein-protein docking 
approaches distinguishes between a first exhaustive systematic docking search followed by 
a second refinement step of pre-selected putative complexes (Bonvin, 2006; Vajda & 
Kozakov, 2009). Docking protocols may even consist of several consecutive refinement and 
rescoring steps (Andrusier et al., 2008). In the present contribution recent progress in the 
area of protein-protein docking with an emphasis on modeling conformational changes and 
adaptation during protein binding processes will be discussed.  

2. Protein protein docking 

The purpose of computational protein-protein docking methods is to predict the structure of 
a protein-protein complex based on the structure of the isolated protein partners. If the 
structure of the isolated partner proteins is not known it is often possible to build structures 
based on sequence homology to a known structure using comparative modelling methods. 
Receptor and ligand proteins are discretized on three-dimensional grids and are portioned 
into inside, surface and outside regions, respectively. Matching of surfaces is measured by 
the overlap of surface regions. For each ligand rotation with respect to the receptor the 
correlation problem is solved using Fast-Fourier-Transformation (FFT). After filtering and 
possible refinement steps solutions with high overlap of surface regions (high surface 
complementarity) are collected as putative solutions.  
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Fig. 1. Rigid protein-protein docking using Fast Fourier Transformation to solve a 
correlation problem.  

2.1 Rigid docking methods 
A variety of computational methods have been developed in recent years to efficiently 
generate a large number of putative binding geometries. The initial stage consists typically 
of a systematic docking search keeping partner structures rigid (Bonvin, 2006; Vajda & 
Kozakov, 2009). Subsequently, one or more refinement and scoring steps of a set of 
preselected rigid docking solutions are added to achieve closer agreement with the native 
geometry and to recognize near-native docking solutions preferentially as the best or among 
the best scoring complexes. In the initial search some unspecific sterical overlap between 
docking partners is typically tolerated to implicitly account for conformational adjustment 
of binding partners (e.g. Pons et al., 2009). Among the most common are geometric hashing 
methods to rapidly match geometric surface descriptors of proteins (Norel et al., 1994) and 
fast Fourier transform (FFT) correlation techniques to efficiently locate overlaps between 
complementary protein surfaces (Katchalski-Katzir et al., 1992). In the latter approach the 
two protein partners are represented by cubic grids, the grid points are assigned discrete 
values for inside, outside and on the surface of the protein. A geometric complementarity 
score can be calculated for the two binding partners by computing the correlation of the two 
grids representing each protein. Instead of summing up all the pair products of the grid 
entries one can make use of the Fourier correlation theorem. The corresponding correlation 
integral can easily be computed in Fourier space. The discrete Fourier transform for the 
receptor grid needs to be calculated only once. Due to the special shifting properties of 
Fourier transforms the different translations of the ligand grid with respect to the receptor 
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grid can be computed by a simple multiplication in Fourier space. This process is repeated 
for various relative orientations of the two proteins. A disadvantage of standard Cartesian 
FFT-based correlation methods is the need to perform FFTs for each relative orientation of 
one protein molecule with respect to the partner. This can be avoided by correlating 
spherical polar basis functions that represent, for example, the surface shape of protein 
molecules. It has been successfully applied in the field of protein-protein docking (Ritchie et 
al., 2008). Recently, new multidimensional correlation methods have been developed that 
allow the correlation of multi-term potentials. Each function needs to be expressed in terms 
of spherical basis functions characterizing the surface properties of the protein partners 
(Ritchie et al., 2008; Zhang et al., 2009). 
Geometric hashing is another common approach to identify possible protein-protein 
arrangements. It has been originally used as a computer visualization technique to match 
complementary substructures of one or several data sets (Norel et al., 1994). In protein-
protein docking each protein surface is discretized as a set of triangles, which are stored in a 
hash table. By means of a hash key similar matching triangles on the surface of protein 
partners can be found quickly. During docking, these triangles comprise points on a 
molecular surface, having a certain geometrical (concave, convex) or physico-chemical 
(polar, hydrophobic) character. By matching triangles belonging to different molecules and 
being of complementary character, putative complex geometries can be generated. 
A third class of methods uses either Brownian Dynamics (Schreiber et al., 2009; Gabdoulline 
& Wade, 2002), Monte Carlo, or multi-start docking minimization to generate large sets of 
putative protein-protein docking geometries (Zacharias, 2003; Fernandez-Recio et al., 2003; 
Gray et al., 2003). These methods have in principle the capacity to introduce conformational 
flexibility of binding partners already at the initial search step. Since these approaches are 
computational more expensive compared to FFT based correlation methods or geometric 
hashing a search is frequently limited to predefined regions of the binding partners (Bonvin, 
2006). Alternatively, it is possible instead of atomistic models to employ coarse-grained 
(reduced) protein models to perform systematic docking searches. With such reduced 
protein models it is possible to optimize docking geometries starting from tens of thousands 
of protein start configurations (Zacharias, 2003; May & Zacharias, 2005). In order to limit the 
number of putative complex structures generated during an initial docking search cluster 
analysis is typically employed to reduce the number to a subset of representative complex 
geometries. Recently, the limitations of rigid docking strategies combined with a rescoring 
step have been systematically investigated by Pons et al. (2009). The authors applied a 
combination of rigid FFT-correlation based docking and re-scoring using the pyDock 
approach (Cheng et al., 2007). PyDock combines electrostatic Coulomb interactions with a 
surface-area-based solvation term (and an optional van der Waals term). The protocol 
showed very good performance for most proteins that undergo minor conformational 
changes upon complex formation (<1 Å Rmsd between unbound and bound structures) but 
unsatisfactory results for cases with significant binding induced conformational changes or 
applications that involved homology modelled proteins. A conclusion is that more specific 
scoring requires at the same time an improvement of the prediction accuracy of proposed 
binding modes in terms of deviation from the experimental binding interface. It also 
indicates the coupling between realistic scoring and accurate prediction of the complex 
structure. 



 
Flexible Protein-Protein Docking 165 

 
Fig. 2. Illustration of the ATTRACT docking methodology In the ATTRACT docking 
approach (Zacharias, 2003) atomic resolution partner structures are first translated (arrows) 
into a reduced (coarse-grained) representation based on pseudo atoms representing whole 
chemical groups. The smaller (ligand) protein is placed at various orientations on many 
starting placements around the receptor protein (in the middle of the Figure) followed by 
energy minimization to find an optimal docking geometry. In case of an attractive pseudo 
atom pair (black line in the plot on the right) an r-8/r-6-Lennard-Jones-type potential is used 
(r is the distance between atoms). For a repulsive pair (red curve) the energy minimum is 
replaced by a saddle point. The mathematical form of the scoring function is given in 
(Fiorucci & Zacharias, 2010b).  

2.2 Flexible docking methods 
A significant fraction of experimentally known protein-protein complexes belongs to the 
class that show only little conformational change upon complex formation. As indicated 
above in such cases it is possible to separate the initial rigid search from a subsequent 
flexible refinement and re-scoring step (see below). However, for many interesting docking 
cases with large associated conformational changes explicit consideration of conformational 
flexibility during the entire docking procedure or at an early refinement step appears to be 
necessary. Furthermore, in order to enhance the impact of docking in structural biology it is 
highly desirable to be able to use protein structures obtained by comparative (homology) 
modeling based on a known template structure with sufficient sequence similarity to the 
target protein. The accuracy of such comparative models depends on the correct alignment 
of target and template sequence. Even in cases of significant average target-template 
similarity the quality of the alignment is often not uniform along the whole protein 
sequence for example due to insertions or deletions in the aligned sequences which can 
result in structural inaccuracies. Overlap of such inaccurate structural segments with the 
protein region in contact with binding partners may interfere with the possibility to produce 
near-native complexes using rigid docking methods. This is also reflected in the fact that 
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docking cases that involve homology modelled protein partners belong to the most difficult 
cases in the CAPRI docking challenge (Lensink et al., 2007).  
One possibility to directly use computationally rapid rigid docking algorithms is to 
indirectly account for receptor flexibility by representing the receptor target as an ensemble 
of structures. The structural ensemble can, for example, be a set of structures obtained 
experimentally (e.g. from nuclear magnetic resonance (NMR) spectroscopy) or can be 
formed by several structural models of a protein. It is also possible to generate ensembles 
from MD simulations (Grunberg et al., 2004) or from distance geometry calculations (de 
Groot et al., 1997). Docking to an ensemble increases the computational demand and due to 
the large number of protein conformations may also increase the number of false positive 
docking solutions. In the field of small-molecule docking a variety of ensemble based 
approaches have been developed in recent years (reviewed in Totrov & Abagyan, 2008). 
Cross docking to ensembles from MD simulations have also been used to implicitly account 
for conformational flexibility in protein docking (Krol et al., 2007). Mustard & Ritchie (2005) 
generated protein structures deformed along directions compatible with a set of distance 
constraints reflecting large scale sterically allowed deformations. Subsequently, the 
structures were used in rigid body docking searches to identify putative complex structures. 
Conformer selection and induced fit mechanism of protein-protein association have been 
compared by ensemble docking methods using the RosettaDock approach (Chaudhury & 
Gray, 2008). The RossettaDock approach includes the possibility of modelling both side 
chain as well as backbone changes for a set of starting geometries obtained from a low-
resolution initial search (Wang et al., 2007). The method was able to successfully select 
binding-competent conformers out of the ensemble based on favourable interaction energy 
with the binding partner (Chaudhury & Gray, 2008). It was recently shown that the Rosetta 
approach can also be used to simultaneously fold and dock the structure of symmetric 
homo-oligomeric complexes starting from completely extended (unfolded) structures of the 
partner proteins (Das et al., 2009). 
For a limited number of start configurations (in case of knowledge of the binding sites) it is 
possible to combine docking with molecular dynamics (MD) or Monte Carlo (MC) 
simulations. This allows, in principle, for full atomic flexibility or flexibility restricted to 
relevant parts of the proteins during docking. The HADDOCK program employs MD 
simulations including ambiguous restraints to drive the partner structures towards the 
approximately known interface (Dominguez et al., 2003). The success of HADDOCK in 
many Capri rounds for targets where some knowledge of the interface region was available 
underscores also the benefits of treating flexibility explicitly during early stages of the 
docking process. For protein-protein docking it is always helpful to include some 
knowledge on the putative interaction region. In these cases the docking problem can often 
be reduced to the refinement of a limited set of docked complexes close to the known 
binding site. Fortunately, for proteins of biological interest and with experimentally 
determined structure there is often also some biochemical (e.g. mutagenesis) data available 
on residues involved in binding to other proteins. Alternatively, bioinformatics techniques 
to predict putative protein interaction regions can often be used to limit or restraint the 
docking search to relevant protein surface parts. Several new techniques to locate putative 
binding sites based on physico-chemical properties or evolutionary conservation have been 
developed in recent years (e.g. de Vries & Bonvin, 2008). 
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Protein partner structures can undergo not only local adjustments (e.g. conformational 
adaptation of side chains and backbone relaxation at the interface) during association but 
also more global conformational changes that involve for example large loop movements or 
domain opening-closing motions. Proteins in solution are dynamic and the question to what 
extend the accessible conformational space in the unbound form overlaps with the bound 
conformation has been at the focus of several experimental and computational studies. 
Elastic Network Model (ENM) calculations are based on simple distance dependent springs 
between protein atoms and despite its simplicity are very successful to describe the mobility 
of proteins around a stable state (Bahar et al., 1997; Bahar et al., 2006). Systematic 
applications to a variety of proteins indicate that there is often significant overlap between 
observed conformational changes and a few soft normal modes obtained from an ENM of 
the unbound form (Keskin, 1998; Tobi & Bahar, 2005; Bakan & Bahar, 2009). ENM-based 
normal mode analysis has been used to identify hinge regions in proteins (Emekli et al., 
2008) and can also be used to design conformational ensembles.  
 

 
Fig. 3. Docking including minimization in soft flexible normal modes (A) Illustration of the 
flexible docking process of the taxi-inhibitor protein (pdb3HD8) to the xylanase target 
receptor protein (pdb1UKR) using the ATTRACT program (May & Zacharias, 2005). 
Putative translational motion of the inhibitor during docking approach is indicated by an 
arrow and the deformability of the xylanse by the superposition of several structures 
deformed in the softest normal mode (grey backbone tube representation). Best possible 
docking solutions (in pink) of the inhibitor relative to the bound (green cartoon) and 
unbound xylanase (red tube) are shown for rigid (B) and flexible (C) docking employing 
minimization along the 5 softest normal mode directions of the xylanase receptor protein. 
The placement of the inhibitor in the experimental structure is shown as grey tube. For 
flexible docking the root-mean-square deviation (Rmsd) from the inhibitor placement in the 
experimental structure was < 2 Å compared to > 8 Å in case of rigid docking. 

It is also possible to use soft collective normal mode directions as additional variables 
during docking by energy minimization (Zacharias & Sklenar, 1999; May & Zacharias, 2005). 
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This allows the rapid relaxation of protein structures on a global scale involving much larger 
collective displacements of atoms during minimization then conventional energy 
minimization using Cartesian or other internal coordinates. The application of refinement in 
normal mode variables has been applied successfully in a number of studies (Lindahl & 
Delarue, 2005; May & Zacharias, 2005; Mashiach et al., 2010). Based on a coarse-grained 
protein model in the ATTRACT docking program (Zacharias, 2003) it has also been used in 
systematic docking searches to account approximately for global conformational changes 
already during the initial screen for putative binding geometries (May & Zacharias, 2008). In 
cases where protein partners undergo collective changes that overlap with the NM variables 
the approach can result in improved geometry and ranking of near-native docking solutions 
and can also lead to an enrichment of solutions close to the native complex structure 
(illustrated for an example case in Figure 3). 
It should be emphasized that the inclusion of pre-calculated flexible degrees of freedom 
obtained from the unbound partners assumes that the collective directions of putative 
conformational change do not change upon binding to a partner protein. Although it has 
been shown that in many cases one can indeed describe a significant part of the observed 
conformational changes upon binding by a few collective degrees of freedom calculated for 
the unbound protein partners this does not need to be generally correct (Keskin, 1998; Tobi 
& Bahar, 2005; Bakan & Bahar, 2009). The binding partners may induce structural changes 
that are not possible for the isolated partner. In such cases pre-calculated flexible degrees of 
freedom cannot account for the true conformational change upon binding. 

2.3 Prediction of putative binding regions prior to docking 
If no experimental data on binding sites is available, binding site prediction methods can 
provide useful data for information driven docking. This type of information can be very 
helpful in order to limit the docking search or to evaluate and filter docking results. Docking 
approaches like HADDOCK (Dominguez et al., 2003) are based on applying restraints 
derived from experimentally known binding sites or predicted binding regions. Several 
different approaches exist to identify putative protein-protein binding sites. These methods 
focus on different characteristics of protein interaction sites like solvent accessibility (Chen 
& Zhou, 2005) or desolvation properties (Pons et al., 2009; Fiorucci & Zacharias, 2010a) and 
in many cases on combining different surface properties (Neuvirth et al., 2004; Liang et al., 
2006). De Vries and Bonvin (2008) divided the properties of binding sites into three groups: 
1. Properties of residues; 2. Evolutionary conservation; 3. Data obtained from atomic 
coordinates. The latter property includes, for example, secondary structure or solvent 
accessibility of residues or protein regions.  
The data generated by predictors using one or more binding site features is presented either 
as a list of residues (Qin & Zhou, 2007) or as a patch on the proteins surface (Jones & 
Thornton, 1997a,b). Patch methods generate one or more patches of circular shape which 
can be found close to each other or distributed on the surface, sometimes additionally centre 
coordinates of these spots are given. In the other case residues from residue list predictors 
do not have to be nearby each other but are often clustered afterwards to receive a joined 
prediction at one or more spots on the proteins surface. Since proteins often have more than 
one binding site, prediction tools can indicate a correct binding site but maybe for the wrong 
binding partner. 
Zhou & Qin (2007) and de Vries & Bonvin (2008) analysed existing predictors which are 
available as Web servers and evaluated the performance of these servers using 25 structures 
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from the CAPRI targets and several other datasets. The binding site predictions can be used 
to evaluate possible predicted docking geometries but also to generate artificial binding sites 
around the prediction to bias the docking run towards a desired region. On the other hand 
predictions can be used to discard complexes with a low overlap of predicted contacts after 
a systematic docking run. Examples of predicted binding regions compared to the known 
binding sites are illustrated for two cases in Figure 4.  
 

 
Fig. 4. Prediction of putative protein binding interfaces. Predictions were performed with 
the meta-PPISP server (Qin & Zhou, 2007) on the partner proteins of an enzyme inhibitor 
complex (pdb2SIC, left panel) and partners of a second complex (pdb1BUH, right panel). In 
each case one partner is represented as surface or collection of spheres, respectively. Protein 
partners are slightly displaced from the complexed state to indicate the native binding 
interface. Red indicates high predicted probability for a residue to be in the binding site and 
dark blue represents a low probability. Left example: The results match the real binding site. 
Right panel: The prediction for the smaller protein overlaps with the real binding site while 
for the larger protein residues quite far apart from the correct binding site are marked as 
putative binding site residues. 

2.4 Flexible refinement and rescoring of docking solutions 
As indicated in the two previous paragraphs protein-protein docking solutions obtained 
from an initial systematic docking run require typically a refinement and possibly also a 
rescoring step (Bonvin, 2006; Andrusier et al., 2008). This is not only necessary in case of 
rigid docking but also often if flexibility has been included approximately in the initial 
search by methods described in the previous paragraph (e.g. minimization in normal mode 
directions). The success of a multistep docking strategy requires that the set of initially 
docking structures contains solutions sufficiently close to the native structure in order to 
allow for further improvement during the refinement process. Hence, the initial scoring 
needs to recognize and preselect a binding mode sufficiently close the native placement and 
it has to simultaneously tolerate possible inaccuracies (atomic overlaps) at the interface. 
Before refinement the docking solutions are clustered to reduce the number of distinct 
docking geometries. Only one (the best scoring) solution from each cluster is typically used 
for further refinement and possible rescoring. 
Refinement of a docked complex can be achieved by energy minimization based on a force 
field description of the proteins at atomic resolution. However, this results typically only in 
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small displacements of atoms to minimize overlap and to optimize locally a hydrogen 
bonding network. Frequently, molecular dynamics (MD) simulations are employed to 
achieve larger conformational adjustments compared to energy minimization during 
docking refinement. MD simulations are based on numerically solving Newton’s equation 
of motion in small time steps (1-2 fs = 1-2 10-15 s) based on a molecular mechanics force field 
description of the protein-protein complex (Karplus & McCammon, 2002). Due to the kinetic 
energy of every atom of the proteins, it is in many cases possible to overcome energy 
barriers and to move the structure significantly farer away from the initial docking 
geometry. Depending on the simulation temperature and length displacements up to several 
Angstroms from the initial atom positions are possible. However, if the displacements 
during MD simulations indeed move the proteins towards a more realistic complex 
structure depends on the accuracy of the force field and on a realistic representation of the 
aqueous solution. Refinement simulations on a given protein-protein complex should, 
ideally, include surrounding aqueous solvent and ions. This, however, increases the 
computational demand for such refinement simulations. In addition, the equilibration of 
explicit solvent molecules around a solute molecule requires significant simulation times 
(currently limited to tens or in some cases hundreds of nanoseconds). Nevertheless, during 
the final stages of some protein-protein docking protocols explicit water molecules can be 
added to the simulation system (van Dijk & Bonvin, 2006). Explicit solvent MD simulations 
can also be used to investigate the flexibility of protein structures prior to docking (Rajamani 
et al., 2004; Camacho, 2005). It is for example possible to identify the alternative or most 
likely side chain conformations. Using principal component analysis of the motions 
extracted from MD simulations it is also possible to analyse the global conformational 
flexibility of binding partners prior to docking (Amadei et al., 1993; Smith et al., 2005).  
The possibility to implicitly account for solvent effects can be used to accelerate the 
refinement process. A variety of implicit solvation models has been developed (reviewed in 
Bashford & Case, 2000; Baker, 2005; Chen et al., 2008). Only a brief description of the most 
relevant concepts for protein-protein docking and scoring will be given. A macroscopic 
solvation concept describes the protein interior as a medium with a low dielectric 
permittivity embedded in a high dielectric continuum representing the aqueous solution 
(Baker, 2005). The effect of the solvent is then calculated as a reaction field from a solution of 
Poisson’s equation for the charges assigned to each atom of the molecule. The mean effect of 
a salt atmosphere can be included by solving the Poisson-Boltzmann equation. The most 
common method to solve the Poisson-Boltzmann equation is the finite-difference method on 
a grid representation of the protein system. However, the method cannot easily be 
combined with MD refinement due to the difficulty to extract accurate solvation forces from 
grid solutions of the Poisson-Boltzmann equation (Gilson et al., 1993).  
It is possible to use more approximate methods like the Generalized Born (GB) method (Still 
et al., 1990; Hawkins et al., 1995; Bashford & Case, 2000). In the GB approach an effective 
solvation radius is assigned to each atom. This effective radius can be thought of as an 
average distance of the selected atom from the solvent or from the solvent accessible surface 
of the molecule. With the effective Born radii calculated for each atom the electrostatic 
solvation and its derivative (solvation forces) can be calculated very rapidly (Schaefer & 
Karplus, 1996; Onufriev et al., 2002). The GB method and related implicit solvent 
approaches are frequently used during refinement of docked protein-protein complexes. 
Once a set of docked and structurally refined complexes has been obtained a rescoring step 
can be used to finally select the most realistic predicted complex. An ideal scoring function 
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should recognize favourable native contacts as found in the bound complex and 
discriminate those from non-native contacts with lower scores. Scoring can be based on a 
physical force field with optimized weights on the energetic contributions (Dominguez et 
al., 2003; Bonvin, 2006; Audie, 2009) or can involve knowledge-based statistical potentials 
derived from known protein protein complex structures (Gottschalk et al., 2004; Zhang et 
al., 2005; Huang & Zou, 2008). Often a single descriptor (e.g. surface complementarity) or a 
single binding energy component (e.g. van der Waals or electrostatic energy) is non-optimal 
to distinguish non-native from near-native solutions. A combination of different surface and 
interface descriptors has been shown to better enrich near-native solutions in the pool of 
best scoring docking solutions (Murphy et al., 2003; Duan et al., 2005; Liu et al., 2006; Martin 
& Schomburg, 2008; Pierce & Weng, 2008; Audie, 2009;Liang et al., 2009). 
The experimentally determined protein-protein complex structures allow the extraction of 
data on the statistics of residue-residue and atom-atom contact preferences at interfaces. 
Based on these statistics it is possible to design knowledge-based scoring functions which in 
general compare the frequency of contact pairs in known interfaces with the expected 
frequency if residues or atoms would randomly distributed at interfaces. Effective 
knowledge-based potentials have been developed that are based on contact preferences of 
amino acids at known interfaces compared to interfaces of non-native decoy complexes 
(Huang & Zou, 2008; Ravikant & Elber, 2009; Kowalsman & Eisenstein, 2009). The resulting 
contact or distance dependent pair-potentials can improve the scoring of near-native 
complexes. The distribution of amino acids in the core region of protein-protein interfaces 
differs on average from the whole interface and the rim region which is partially exposed to 
water even in the presence of the binding partner. This observation has also been explored 
to improve the recognition of near-native binding geometries and has been demonstrated on 
several test cases (Kowalsman & Eisenstein, 2009). 

3. Conclusion 

The rational modifications of protein surfaces are increasingly being used to design new 
protein-protein binding interfaces. Another ultimate aim of protein-protein docking 
approaches is the application on a systematic proteomic scale. Methods of protein-protein 
docking and interface refinement could help to predict possible protein interaction 
geometries and guide such protein interaction design. The realistic prediction of binding 
geometries of protein-protein complexes is highly desirable to provide structural models for 
the many important protein-protein interactions in a cell. Progress in both the efficiency and 
in the development of new docking algorithms has been achieved in recent years. Still a 
major challenge is the appropriate inclusion of possible conformational changes during the 
docking searches. This is of great importance since for the many protein interaction cases 
only homology modelled structures of the partners are available. Employing an appropriate 
ensemble of protein conformations or, alternatively, the efficient explicit consideration of 
conformational changes during docking are possible routes of progress. For many protein-
protein interactions experimental data (e.g. low resolution structural or biochemical data) is 
available that restricts the range of possible complex structures. Here, restraint driven 
docking techniques that include flexibility of the binding partners at early refinement stages 
are promising. In recent years it has become clear that many protein-protein interactions 
involve coupled folding of disordered parts of proteins upon association. The possibility of 
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structure prediction and modelling of such interactions is at a very early stage. Progress in 
this area will require many new algorithms and method developments.  
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